题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3996 把题中的式子拆开看看,发现就是如下关系: 如果 a[i] == 1 && a[j] == 1,则 b[i][j] 有贡献: 如果 a[i] == 1,则 -c[i] 有贡献: 所以就是最大权闭合子图的模型,b[i][j] 向 a[i] 和 a[j] 连边,a[i] 向 c[i] 连边: 而 c[i] 这个点实际上没什么用,直接变成 a[i] 向 T 连边,边权是 c[i] 即可…
Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D Input 第一行输入一个整数N,接下来N行输入B矩阵,第i行第J个数字代表Bij. 接下来一行输入N个整数,代表矩阵C.矩阵B和矩阵C中每个数字都是不超过1000的非负整数. Output 输出最大的D Sample Input 3 1 2 1 3 1 0 1 2 3 2 3 7 Sample Output 2 HINT 1<=N<…
展开 \(D=(AB-C)A^T\\ =\sum_{i=1}^n(\sum_{j=1}^na_jb_{j,i}-c_i)a_i\\ =\sum_{i=1}^n\sum_{j=1}^na_ia_jb_{i,j}-\sum_{i=1}^na_ic_i\) 对每一对 \(i,j\),同时选获得 \(b_{ij}+b_{ji}\) 某个 \(i\) 不选,额外损失 \(c_i\) 考虑最大权闭合子图 \(S \to (i,j)= b_{ij}+b_{ji}\) \((i,j) \to i (j) = \…
BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图 Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D Input 第一行输入一个整数N,接下来N行输入B矩阵,第i行第J个数字代表Bij. 接下来一行输入N个整数,代表矩阵C.矩阵B和矩阵C中每个数字都是不超过1000的非负整数. Output 输出最大的D Sample Input 3 1 2 1 3 1 0 1 2 3…
BZOJ 最大密度子图. 二分答案\(x\),转为求是否存在方案满足:\(边数-x*点数\geq 0\). 选一条边就必须选两个点,所以可以转成最大权闭合子图.边有\(1\)的正权,点有\(x\)的负权.判断\(边数-最小割\)是否非负即可. 有一个结论是,任意两个密度子图,它们的密度差不超过\(\frac{1}{n^2}\). 所以拿eps=1e-7或者更小做二分边界不对... 必须是\(while(l+1.0/n/n<=r)\). 还要注意精度的问题.. m=0要输出1. //1300kb…
链接 BZOJ 4873 题解 当年的省选题--还记得蒟蒻的我Day1 20分滚粗-- 这道题是个最大权闭合子图的套路题.严重怀疑出题人就是先画好了图然后照着图编了个3000字的题面.和我喜欢的妹子当年给别人写的情书一样长-- 最大权闭合子图 最大权闭合子图问题:一个有向图中,每个点带有一个权值(有正有负),有向边\(u \to v\)表示选\(u\)必须选\(v\),选出一些点使权值和最大,问权值和最大是多少. 最大权闭合子图的解法:网络流建图,对于每个点\(u\),设权值为\(w_u\),如…
题目链接:https://www.luogu.org/problemnew/show/P2805(bzoj那个实在是有点小小的辣眼睛...我就把洛谷的丢出来吧...) 题意概述:给出一张有向图,这张有向图上的每个点都有一个点权,想要访问某个点必须要先访问这个点所能够访问(遍历)到的所有点,在访问到一个点之后将会得到这个点的权值(可正可负).问访问这张图可以得到的最大点权和. 原题说过来说过去实际上是描述了一个植物之间的保护关系,也就是说明了植物之间的先后访问顺序之间的关系.可以描述为要“要访问点…
题意 自己看吧 BZOJ传送门 分析 - 这道题其实就是一些点,存在一些二元限制条件,即如果要选uuu则必须选vvv.求得到的权值最大是多少. 建一个图,如果选uuu必须选vvv,则uuu向vvv连边.那么一个点如果要选肯定所有儿子都要选(也就是整棵子数都要选).这就是一个最大权闭合子图的模型. 可以发现,如果一个点数大于1的强连通分量每个点都不可选.那么去挑这些点,同时也可以去掉这些点的祖先.然后就是一个有向无环图.我们选点只要保证选了uuu必须选所有直接相连的儿子就行了.那么就可以用最小割建…
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1497 分析: 这是在有向图中的问题,且边依赖于点,有向图中存在点.边之间的依赖关系可以考虑最大权闭合子图 假设a与b之间有权值为c的边(根据题意是双向边) 那么我们可以建一个新节点,点的权值为c,并指向a点和b点(单向),同时断掉原本a,b之间的双向边,a,b的点的权值是它们的花费(负的) 那么对于原问题就转化成了求最大权闭合子图的问题了 ——————————————————————…
因为每个植物都有保护的点(每排相邻的右面的算是保护左面的),所以连他和保护 的点一条边,然后每个点有自己的权值,要找到最大的权值且满足每个点在访问时他 的前驱一定被访问,那么反向建边,转化为后继必须访问,即求一个 最大权闭合子图,然后转化为网络流最小割模型求解..然后因为成环的点肯定不会被毁掉,所以直接删了,可以由拓扑排序得出,可以提高速度 然后我还是tle了...有个480A的码,明儿看看啥意思吧... /********************************************…