Convolutional Neural Networks 笔记】的更多相关文章

1 Foundations of Convolutional Neural Networks 1.1 cv问题 图像分类.目标检测.风格转换.但是高像素的图片会带来许多许多的特征. 1.2 边缘检测(卷积操作) 图像和卷积核(滤波器)移动相乘.横向.纵向滤波器.过滤器里的值也是可以学习的. 1.3 Padding(补白) 卷积会使图像变小,丢掉部分边缘信息.所以需要将边缘补白,补充为0. 假设图片尺寸为n,卷积尺寸为f.卷积之后会变为n-f+1尺寸. padd尺寸为p.valid convolu…
以下内容摘自<Bag of Tricks for Image Classification with Convolutional Neural Networks>. 1 高效训练 1.1 大batch训练 当我们有一定资源后,当然希望能充分利用起来,所以通常会增加batch size来达到加速训练的效果.但是,有不少实验结果表明增大batch size可能降低收敛率,所以为了解决这一问题有人以下方法可供选择: 1.1.1 线性增加学习率 一句话概括就是batch size增加多少倍,学习率也增…
一.卷积 卷积神经网络(Convolutional Neural Networks)是一种在空间上共享参数的神经网络.使用数层卷积,而不是数层的矩阵相乘.在图像的处理过程中,每一张图片都可以看成一张“薄饼”,其中包括了图片的高度.宽度和深度(即颜色,用RGB表示). 在不改变权重的情况下,把这个上方具有k个输出的小神经网络对应的小块滑遍整个图像,可以得到一个宽度.高度不同,而且深度也不同的新图像. 卷积时有很多种填充图像的方法,以下主要介绍两种,一种是相同填充,一种是有效填充. 如图中紫色方框所…
The Impact of Imbalanced Training Data for Convolutional Neural Networks Paulina Hensman and David Masko 摘要 本论文从实验的角度调研了训练数据的不均衡性对采用CNN解决图像分类问题的性能影响.CIFAR-10数据集包含10个不同类别的60000个图像,用来构建不同类间分布的数据集.例如,一些训练集中包含一个类别的图像数目与其他类别的图像数目比例失衡.用这些训练集分别来训练一个CNN,度量其得…
Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking  arXiv Paper Project Page:http://guanghan.info/projects/ROLO/ GitHub:https://github.com/wangxiao5791509/ROLO 摘要:本文提出了一种新的方法进行空间监督 RCNN 来进行目标跟踪.我们通过深度神经网络来学习到  loc…
Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理跟踪问题.众所周知,CNN在很多视觉领域都是如鱼得水,唯独目标跟踪显得有点“慢热”,这主要是因为CNN的训练需要海量数据,纵然是在ImageNet 数据集上微调后的model 仍然不足以很好的表达要跟踪地物体,因为Tracking问题的特殊性,至于怎么特殊的,且听细细道来. 目标跟踪之所以很少被 C…
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #042eee } span.s1 { } span.s2 { text-decoration: underline } Is objec…
Learning Convolutional Neural Networks for Graphs 2018-01-17  21:41:57 [Introduction] 这篇 paper 是发表在 ICML 2016 的:http://jmlr.org/proceedings/papers/v48/niepert16.pdf 上图展示了传统 CNN 在 image 上进行卷积操作的工作流程.(a)就是通过滑动窗口的形式,利用3*3 的卷积核在 image 上进行滑动,来感知以某一个像素点为中心…
论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications MobileNet由Google提出的一种新的卷积计算方法,旨在加速卷积计算过程. 为了减小网络模型大小,提出了两种比较暴力的裁剪方法. (1) 直接对channel进行裁剪,这种随机砍掉一些channel,也太暴力了吧,砍多了效果肯定不好,想想都知道. (2) 减少输入图像的分辨率,也就是减小输入的尺寸大小. 我们还是关…
论文题目<Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks> 论文作者:Y ushi Chen, Member , IEEE, Hanlu Jiang, Chunyang Li, Xiuping Jia, Senior Member , IEEE, and Pedram Ghamisi, Member , IEEE 论文发表年份:20…