spark join】的更多相关文章

本文主要介绍spark join相关操作,Java描述. 讲述三个方法spark join,left-outer-join,right-outer-join 我们以实例来进行说明.我的实现步骤记录如下. 1.数据准备 2.HSQL描述 3.Spark描述 1.数据准备 我们准备两张Hive表,分别是orders(订单表)和drivers(司机表),通过driver_id字段进行关联.数据如下: orders hive (gulfstream_test)> select * from orders…
PairRDDFunctions类提供了以下两个join接口,只提供一个参数,不指定分区函数时默认使用HashPartitioner;提供numPartitions参数时,其内部的分区函数是HashPartitioner(numPartitions) def join[W](other: RDD[(K, W)]): RDD[(K, (V, W))] = self.withScope { //这里的defaultPartitioner 就是HashPartitioner,如果指定了HashPart…
在大量数据中对一些字段进行关联. 举例 ipTable:需要进行关联的几千条ip数据(70k) hist:历史数据(百亿级别) 直接join将会对所有数据进行shuffle,需要大量的io操作,相同的key会在同一个partition中进行处理,任务的并发度也收到了限制. 使用broadcast将会把小表分发到每台执行节点上,因此,关联操作都在本地完成,基本就取消了shuffle的过程,运行效率大幅度提高. 样本数据(2000w)性能测试对比 小表没有进行broadcast 进行了broadca…
数据分析中将两个数据集进行 Join 操作是很常见的场景.在 Spark 的物理计划阶段,Spark 的 Join Selection 类会根 据 Join hints 策略.Join 表的大小. Join 是等值 Join 还是不等值以及参与 Join 的 key 是否可以排序等条件来选择最 终的 Join 策略,最后 Spark 会利用选择好的 Join 策略执行最终的计算.当前 Spark 一共支持五种 Join 策略: Broadcast hash join (BHJ) Shuffle…
[training@localhost ~]$ hdfs dfs -cat people.json {"name":"Alice","pcode":"94304"}{"name":"Brayden","age":30,"pcode":"94304"}{"name":"Carla",&quo…
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-sql-joins.html https://acadgild.com/blog/what-is-join-in-apache-spark/ http://spark.apache.org/docs/latest/programming-guide.html https://www.iteblog.com/archives/1566.html http:…
1.RDD[K,V],键值对类型的rdd的函数在PairRDDFunctions这个类中 rdd类中,通过隐士转换让rdd有了PairRDDFunctions这个类里面方法的功能 2.rdd 的join方式 1.join=>rdd[k,v] join rdd[k,w]=>RDD[(K, (V, W))] def join[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (V, W))] 2.leftOuterJoin 右边有可…
http://blog.csdn.net/lsshlsw/article/details/48975771 https://www.douban.com/note/499691663/ http://blog.csdn.net/kejiaming/article/details/52084898 http://www.cnblogs.com/MOBIN/p/5618747.html#4…
内链接…
本文主要介绍spark join相关操作. 讲述spark连接相关的三个方法join,left-outer-join,right-outer-join,在这之前,我们用hiveSQL先跑出了结果以方便进行对比. 我们以实例来进行说明.我的实现步骤记录如下. 1.数据准备 2.HSQL描述 3.Spark描述 1.数据准备 我们准备两张Hive表,分别是orders(订单表)和drivers(司机表),通过driver_id字段进行关联.数据如下: orders orders表有两个字段,订单id…
spark sql 中join的类型 Spark DataFrame中join与SQL很像,都有inner join, left join, right join, full join; 类型 说明 inner join 内连接 left join 左连接 right join 右连接 full join 全连接 spark join 看其原型 def join(right : DataFrame, usingColumns : Seq[String], joinType : String) :…
摘要: 1.spark_core 2.spark_sql 3.spark_ml 内容: 1.spark_core 原理篇: Spark RDD 核心总结 RangePartitioner 实现简记 Spark核心作业调度和任务调度之DAGScheduler源码 Spark 运行架构核心总结 Spark DAGSheduler生成Stage过程分析实验 Spark join 源码跟读记录 图解spark的RDD编程模型 (收藏用) 实战篇: Spark算子选择策略 Spark的持久化简记 Spar…
这篇文章是基于上一篇文章的续集 一:需求 1.图形表示 二:程序 1.程序. package com.scala.it import java.util.Properties import org.apache.spark.sql.SaveMode import org.apache.spark.sql.hive.HiveContext import org.apache.spark.{SparkConf, SparkContext} object HiveToMysql { def main(…
http://www.cnblogs.com/LBSer/p/4129481.html 一.问题 使用spark join两张表(5000w*500w)总是出错,报的异常显示是在shuffle阶段. 14/11/27 12:05:49 ERROR storage.DiskBlockObjectWriter: Uncaught exception while reverting partial writes to file /hadoop/application_1415632483774_448…
一. 数据倾斜的现象 多数task执行速度较快,少数task执行时间非常长,或者等待很长时间后提示你内存不足,执行失败. 二. 数据倾斜的原因 常见于各种shuffle操作,例如reduceByKey,groupByKey,join等操作. 数据问题 key本身分布不均匀(包括大量的key为空) key的设置不合理 spark使用问题 shuffle时的并发度不够 计算方式有误 三. 数据倾斜的后果 spark中一个stage的执行时间受限于最后那个执行完的task,因此运行缓慢的任务会拖累整个…
前面一篇文章提到大数据开发-Spark Join原理详解,本文从源码角度来看cogroup 的join实现 1.分析下面的代码 import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} object JoinDemo { def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName(this.get…
用户特征文件 userFeature.data 每 行 代 表 一 个 用 户 的 特 征 数 据, 格 式 为: “uid|features”,uid 和 features 用竖线“|”分隔.其中 feature 采用 vowpal wabbit(https://github.com/JohnLangford/vowpal_wabbit)格式: “feature_group1|feature_group2|feature_group3|...”. 每 个 feature_group 代表一个特…
1 你是如何实现Flume数据传输的监控的使用第三方框架Ganglia实时监控Flume. 2 Flume的Source,Sink,Channel的作用?你们Source是什么类型?1.作用 (1)Source组件是专门用来收集数据的,可以处理各种类型.各种格式的日志数据,包括avro.thrift.exec.jms.spooling directory.netcat.sequence generator.syslog.http.legacy (2)Channel组件对采集到的数据进行缓存,可以…
1.Spark计算依赖内存,如果目前只有10g内存,但是需要将500G的文件排序并输出,需要如何操作? ①.把磁盘上的500G数据分割为100块(chunks),每份5GB.(注意,要留一些系统空间!) ②.顺序将每份5GB数据读入内存,使用quick sort算法排序. ③.把排序好的数据(也是5GB)存放回磁盘. ④.循环100次,现在,所有的100个块都已经各自排序了.(剩下的工作就是如何把它们合并排序!) ⑤.从100个块中分别读取5G/100=0.05 G入内存(100input bu…
1. 背景 OnZoom是Zoom新产品,是基于Zoom Meeting的一个独一无二的在线活动平台和市场.作为Zoom统一通信平台的延伸,OnZoom是一个综合性解决方案,为付费的Zoom用户提供创建.主持和盈利的活动,如健身课.音乐会.站立表演或即兴表演,以及Zoom会议平台上的音乐课程. 在OnZoom data platform中,source数据主要分为MySQL DB数据和Log数据. 其中Kafka数据通过Spark Streaming job实时消费,MySQL数据通过Spark…
声明: 大数据中,最重要的算子操作是:join  !!! 典型的transformation和action val nums = sc.parallelize(1 to 10) //根据集合创建RDD map适用于 package com.zhouls.spark.cores import org.apache.spark.{SparkConf, SparkContext} /** * Created by Administrator on 2016/9/27. */object Transfo…
1.以本地模式实战map和filter 2.以集群模式实战textFile和cache 3.对Job输出结果进行升和降序 4.union 5.groupByKey 6.join 7.reduce 8.lookup 1.以本地模式实战map和filter 以local的方式,运行spark-shell. spark@SparkSingleNode:~$ cd /usr/local/spark/spark-1.5.2-bin-hadoop2.6/binspark@SparkSingleNode:/u…
spark基础知识请参考spark官网:http://spark.apache.org/docs/1.2.1/quick-start.html 无论是mapreduce还是spark ,分布式框架的性能优化方向大致分为:负载均衡.网络传输和磁盘I/O 这三块.而spark是基于内存的计算框架,因此在编写应用时需要充分利用其内存计算特征.本篇主要针对 spark应用中的join问题进行讨论,关于集群参数的优化会在另一篇文章中提及. 在传统的数据库平台和分布式计算平台,join的性能消耗都是很可观的…
示例   Spark SQL注册“临时表”执行“Join”(Inner Join.Left Outer Join.Right Outer Join.Full Outer Join)   代码   from pyspark import SparkConf, SparkContext from pyspark.sql import SQLContext, Row conf = SparkConf().setAppName("spark_sql_table_join") sc = Spar…
1.小表对大表(broadcast join) 将小表的数据分发到每个节点上,供大表使用.executor存储小表的全部数据,一定程度上牺牲了空间,换取shuffle操作大量的耗时,这在SparkSQL中称作Broadcast Join Broadcast Join的条件有以下几个: *被广播的表需要小于 spark.sql.autoBroadcastJoinThreshold 所配置的值,默认是10M (或者加了broadcast join的hint) *基表不能被广播,比如 left out…
spark中join有两种,一种是RDD的join,一种是sql中的join,分别来看: 1 RDD join org.apache.spark.rdd.PairRDDFunctions /** * Return an RDD containing all pairs of elements with matching keys in `this` and `other`. Each * pair of elements will be returned as a (k, (v1, v2)) t…
Spark的join与mysql的join类似,mysql的join是将表与表之间连接查询,spark中join是将RDD数据集进行连接,Spark主要有join.leftOuterJoin.rightOuterJoin及fullOuterJoin这4种连接 join:相当于mysql的INNER JOIN,当join左右两边的数据集都存在时才返回 leftOuterJoin:相当于mysql的LEFT JOIN,leftOuterJoin返回数据集左边的全部数据和数据集左边与右边有交集的数据…
map join相对reduce join来说,可以减少在shuff阶段的网络传输,从而提高效率,所以大表与小表关联时,尽量将小表数据先用广播变量导入内存,后面各个executor都可以直接使用 package sogolog import org.apache.hadoop.io.{LongWritable, Text} import org.apache.hadoop.mapred.TextInputFormat import org.apache.spark.rdd.RDD import…
[使用场景] 两个RDD进行join的时候,如果数据量都比较大,那么此时可以sample看下两个RDD中的key分布情况.如果出现数据倾斜,是因为其中某一个RDD中的少数几个key的数据量过大,而另一个RDD中的所有key都分布比较均匀,此时可以考虑采用本解决方案. [解决方案] 对有数据倾斜那个RDD,使用sample算子采样出一份样本,统计下每个key的数量,看看导致数据倾斜数据量最大的是哪几个key. 然后将这几个key对应的数据从原来的RDD中拆分出来,形成一个单独的RDD,并给每个ke…