使用python3完成人脸识别】的更多相关文章

一.介绍 我想做的是基于人脸识别的表情(情绪)分析.看到网上也是有很多的开源库提供使用,为开发提供了很大的方便.我选择目前用的比较多的dlib库进行人脸识别与特征标定.使用python也缩短了开发周期. 官网对于dlib的介绍是:Dlib包含广泛的机器学习算法.所有的设计都是高度模块化的,快速执行,并且通过一个干净而现代的C ++ API,使用起来非常简单.它用于各种应用,包括机器人技术,嵌入式设备,手机和大型高性能计算环境. 虽然应用都比较高大上,但是自己在PC上做个情绪分析的小软件还是挺有意…
原文地址:https://www.jb51.net/article/160197.htm 第一种: # -*- coding:utf-8 -*- import cv2 as cv import numpy as np src = cv.imread('test1.jpg') path = r'D:\face' def face_detect_demo(): gray = cv.cvtColor(src,cv.COLOR_BGR2GRAY) face_detector = cv.CascadeCl…
opencv3.1  +  python3.4 第一回合(抄代码,可实现):人脸识别涉及一个级联表,目前能力还无法理解. 流程:1.读取图像---2.转换为灰度图---3.创建级联表---4.对灰度图使用级联表方法过滤---5.迭代得到的结果依次标记出来---6.保存图像 完整代码: import cv2 #读取图片 img = cv2.imread('5.jpg') #转化为灰度图 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #特征级联表 face_…
python3+虹软2.0的所有功能整合测试完成,并对虹软所有功能进行了封装,现提供demo主要功能,1.人脸识别2.人脸特征提取3.特征比对4.特征数据存储与比对其他特征没有添加 sdk 下载请戳这里 face_class.py 复制代码 from ctypes import * #人脸框 class MRECT(Structure): _fields_=[(u'left1',c_int32),(u'top1',c_int32),(u'right1',c_int32),(u'bottom1',…
Python3+Dlib实现简单人脸识别案例 写在前边 很早很早之前,当我还是一个傻了吧唧的专科生的时候,我就听说过人脸识别,听说过算法,听说过人工智能,并且也出生牛犊不怕虎般的学习过TensorFlow,结果嘞,被虎啃得连渣都不剩!从此再也不敢接触算法和人工智能了... 但是!BUT!在自己经历的事情多了之后,在受打击到习以为常了之后, 在努力半天仍旧一事无成之后,你就会悟出一个道理  ——  老子从未成功过,又怕哪门子失败! 所以,对数学一窍不通的我,毅然决然的再次走上了一条不归路 ....…
python3+虹软2.0的所有功能整合测试完成,并对虹软所有功能进行了封装,现提供demo主要功能,1.人脸识别2.人脸特征提取3.特征比对4.特征数据存储与比对其他特征没有添加 虹软SDK下载戳这里 face_class.py from ctypes import * #人脸框 class MRECT(Structure): _fields_=[(u'left1',c_int32),(u'top1',c_int32),(u'right1',c_int32),(u'bottom1',c_int…
0.引言 利用python开发,借助Dlib库捕获摄像头中的人脸,提取人脸特征,通过计算欧氏距离来和预存的人脸特征进行对比,达到人脸识别的目的: 可以自动从摄像头中抠取人脸图片存储到本地,然后提取构建预设人脸特征: 根据抠取的 / 已有的同一个人多张人脸图片提取128D特征值,然后计算该人的128D特征均值: 然后和摄像头中实时获取到的人脸提取出的特征值,计算欧氏距离,判定是否为同一张人脸: 人脸识别 / face recognition的说明: wikipedia 关于人脸识别系统 / fac…
前言 第一次写博客,有点紧张和兴奋.废话不多说,直接进入正题.如果你渴望使你的电脑能够进行人脸识别:如果你不想了解什么c++.底层算法:如果你也不想买什么树莓派,安装什么几个G的opencv:如果你和我一样是个还没入门的小白,但是想体验一下人脸识别的魅力.那么恭喜你,这篇文章就是为你准备的.让我们开始吧! 一.需要准备的材料 1.一台可以联网的有摄像头的电脑(手动滑稽). 2.python3.7的安装包 二.Python3.7及其第三方包的安装 1.Python3.7的安装 关于python3.…
学校里有门图像处理的课程最终需要提交一个图像处理系统, 正好之前对于opencv有些了解,就简单的写一个人脸识别小程序吧 效果图如下 笔者IDE使用Pycharm,GUI编程直接使用内置的tkinter 环境: python3.6 opencv4.1 首先导入需要使用的各个库 #-*- coding: utf-8 -*- import sys import importlib import cv2 import tkinter as tk import tkinter.messagebox fr…
https://www.cnblogs.com/31415926535x/p/10620732.html 之前为了配置tensorflow-gpu的环境又是装cuda,又是装cudnn,还有tensoflow-gpu等等,,因为当时也是第一次搭建这个环境,所以完全是按照别人的搭建方法来一步一步的弄得,,后来我在给室友安装环境的时候,发现cuda,cudnn什么的完全不用自己安装,,,全部交给 anaconda3 (好东西)就行了 Anaconda3安装 几乎最后所有的东西都是用这个完成的,,所以…