Abstract 许多图像到图像的翻译问题是有歧义的,因为一个输入图像可能对应多个可能的输出.在这项工作中,我们的目标是在一个条件生成模型设置中建立可能的输出分布.将模糊度提取到一个低维潜在向量中,在测试时随机采样.生成器学习将给定的输入与此潜在编码映射到输出.我们明确地鼓励输出和潜在编码之间的连接是可逆的.这有助于防止训练期间从潜在编码到输出的多对一映射也称为模式崩溃问题,并产生更多样化的结果.我们通过使用不同的训练目标.网络架构和注入潜在编码的方法来探索此方法的几个变体.我们提出的方法鼓励了…
摘要:无监督图像转换是计算机视觉领域中一个重要而又具有挑战性的问题.给定源域中的一幅图像,目标是学习目标域中对应图像的条件分布,而不需要看到任何对应图像对的例子.虽然这种条件分布本质上是多模态的,但现有的方法做了过度简化的假设,将其建模为确定性的一对一映射.因此,它们无法从给定的源域映像生成不同的输出.为了解决这一局限性,我们提出了一个多模态无监督图像到图像的转换(MUNIT)框架.我们假设可以将图像表示分解为域不变的内容代码和捕获特定域属性的样式代码.为了将图像转换到另一个域,我们将其内容代码…
---恢复内容开始--- Motivation 使用单组的生成器G和判别训练图片在多个不同的图片域中进行转换 效果确实很逆天,难怪连Good Fellow都亲手给本文点赞 Introduction 论述了Image translating的概念,GAN极大地提升了该领域的生成质量.具体到头像生成任务,作者定义attribute为图片特征(feature),如haircolor,age,gender等:domain被定义为 一系列共享了某个属性的图片,如女性图片和男性图片分属不同的domain.该…
Abstract 最近在两个领域上的图像翻译研究取得了显著的成果.但是在处理多于两个领域的问题上,现存的方法在尺度和鲁棒性上还是有所欠缺,因为需要为每个图像域对单独训练不同的模型.为了解决该问题,我们提出了StarGAN方法,这是一个新型的可扩展的方法,能够仅使用一个单一模型就实现多领域的图像翻译.StarGAN这样的统一模型的结构允许在单个网络上同时训练带有不同领域的多个数据集.这使得StarGAN的翻译图像质量优于现有的模型,并具有将输入图像灵活地翻译到任意目标域的新能力.通过实验,验证了该…
论文标题:Multi-task Learning for Multi-modal Emotion Recognition and Sentiment Analysis 论文链接:http://arxiv.org/abs/1905.05812 文章同时使用视觉.语音.和文本(语言)信息进行情感分析,通过增加视觉和语音信号,补足了一些无法通过文本来进行判断的情况,例如下图中,第一句话需要图像才能判断为负面情绪,第二句话同时语音和图像才能判断为负面情绪. 一.模型架构 模型整体思路 1.首先,每一个模…
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ) 2.Elements of Statistical Learning(by Bishop's) 这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本.如果看英文觉得吃力,推荐看一下下面…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
生成式对抗模型GAN (Generativeadversarial networks) 是Goodfellow等[1]在 2014年提出的一种生成式模型,目前已经成为人工智能学界一个热门的研究方向,著名学者Yann Lecun甚至将其称为“过去十年间机器学习领域最让人激动的点子".GAN的基本思想源自博弈论的二人零和博弈,由一个生成器和一个判别器构成,通过对抗学习的方式来训练,目的是估测数据样本的潜在分布并生成新的数据样本.在图像和视觉计算.语音和语言处理.信息安全.棋类比赛等领域,GAN正在被…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
内容概要: 一.python2 or python3 目前大多使用python2.7,随着时间的推移,python3将会成为python爱好者的主流. python2和3区别: 1.PRINT IS A FUNCTION Old: print "The answer is", 2*2 New: print("The answer is", 2*2) Old: print x, # Trailing comma suppresses newline New: prin…