pytorch tutorial 1】的更多相关文章

引自Pytorch tutorial: Data Loading and Processing Tutorial 这节主要介绍数据的读入与处理. 数据描述:人脸姿态数据集.共有69张人脸,每张人脸都有68个点 .可视化其中一张如下: 一.数据读取 这些图像名字与散点坐标存于 face_landmarks.csv 文件中,所以需要利用pandas库来分析. 引入需要的库: from __future__ import print_function, division import os impor…
前言 上文介绍了数据读取.数据转换.批量处理等等.了解到在PyTorch中,数据加载主要有两种方式: 1.自定义的数据集对象.数据集对象被抽象为Dataset类,实现自定义的数据集需要继承Dataset.且须实现__len__()和__getitem__()两个方法. 2.利用torchvision包.torchvision已经预先实现了常用的Dataset,包括前面使用过的CIFAR-10,以及ImageNet.COCO.MNIST.LSUN等数据集,可通过诸如torchvision.data…
上文介绍了数据读取.数据转换.批量处理等等.了解到在PyTorch中,数据加载主要有两种方式: 1. 自定义的数据集对象.数据集对象被抽象为Dataset类,实现自定义的数据集需要继承Dataset.且须实现__len__()和__getitem__()两个方法. 2. 利用torchvision包.torchvision已经预先实现了常用的Dataset,包括前面使用过的CIFAR-10,以及ImageNet.COCO.MNIST.LSUN等数据集,可通过诸如torchvision.datas…
引自官方:  Transfer Learning tutorial Ng在Deeplearning.ai中讲过迁移学习适用于任务A.B有相同输入.任务B比任务A有更少的数据.A任务的低级特征有助于任务B.对于迁移学习,经验规则是如果任务B的数据很小,那可能只需训练最后一层的权重.若有足够多的数据则可以重新训练网络中的所有层.如果重新训练网络中的所有参数,这个在训练初期称为预训练(pre-training),因为事先利用任务A的权重初始化.在预训练的基础上更新权重,那么这个过程叫微调(fine t…
这里使用pytorch进行一个简单的二分类模型 导入所有我们需要的库 import torch import matplotlib.pyplot as plt import torch.nn.functional as F 接着我们这里 生成我们需要的假数据 # set seed torch.manual_seed(1) # make fake data n_data = torch.ones(100, 2) x0 = torch.normal(2 * n_data, 1) y0 = torch…
这里用torch 做一个最简单的测试 目标就是我们用torch 建立一个一层的网络,然后拟合一组可以回归的数据 import torch from torch.autograd import Variable import torch.nn.functional as F import matplotlib.pyplot as plt x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) y = x.pow(2) + 0.2*torch.r…
关于自编码器的原理见另一篇博客 : 编码器AE & VAE 这里谈谈对于变分自编码器(Variational auto-encoder)即VAE的实现. 1. 稀疏编码 首先介绍一下“稀疏编码”这一概念. 早期学者在黑白风景照片中可以提取到许多16*16像素的图像碎片.而这些图像碎片几乎都可由64种正交的边组合得到.而且组合出一张碎片所需的边的数目很少,即稀疏的.同时在音频中大多数声音也可由几种基本结构组合得到.这其实就是特征的稀疏表达.即使用少量的基本特征来组合更加高层抽象的特征.在神经网络中…
Awesome-Pytorch-list 2018-08-10 09:25:16 This blog is copied from: https://github.com/Epsilon-Lee/Awesome-pytorch-list Pytorch & related libraries pytorch : Tensors and Dynamic neural networks in Python with strong GPU acceleration. pytorch extras :…
http://www.sohu.com/a/164171974_741733   本文收集了大量基于 PyTorch 实现的代码链接,其中有适用于深度学习新手的“入门指导系列”,也有适用于老司机的论文代码实现,包括 Attention Based CNN.A3C.WGAN等等.所有代码均按照所属技术领域分类,包括机器视觉/图像相关.自然语言处理相关.强化学习相关等等.所以如果你打算入手这风行一世的 PyTorch 技术,那么就快快收藏本文吧! PyTorch 是什么? PyTorch即 Torc…
本文首发于个人博客https://kezunlin.me/post/23014ca5/,欢迎阅读最新内容! anaconda tutorial on ubuntu 16.04 Guide versions: ubuntu 16.04 conda 4.6.14 python 3.7.3 (default) python 3.5.6 (env) Install Conda download Anaconda3-2019.03-Linux-x86_64.sh from here bash ./Anac…