之前在<过拟合和欠拟合(Over fitting & Under fitting)>一文中简要地介绍了过拟合现象,现在来详细地分析一下过拟合产生的原因以及相应的解决办法. 过拟合产生的原因: 第一个原因就是用于训练的数据量太少.这个很好理解,因为理想的训练数据是从所有数据中抽取的无偏差抽样.如果训练数据量较少,那么很有可能训练数据就不能完全反映所有数据的规律.因此模型很可能学习到的是一些特殊的例子,而不是真实的规律. 之前说过,过拟合就是模型把噪音也学习了进去.其中一个噪音就是大家所熟…
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 4.正则化与过拟合问题 Regularization/The Problem of Overfitting 1 过拟合问题 The problem of overfitting 首先,Andrew Ng还是对之前几节中提到过的房屋面积-房价问题进…
7.1  过拟合的问题 7.2  代价函数 7.3  正则化线性回归 7.4  正则化的逻辑回归模型 7.1  过拟合的问题 如果我们有非常多的特征,我们通过学习得到的假设预测可能能够非常好地适应训练集(代价函数可能几乎为 0),但是可能会不能推广到新的数据. 下图是一个回归问题的例子:…
我们之前解决过一个理论问题:机器学习能不能起作用?现在来解决另一个理论问题:过度拟合. 正如之前我们看到的,很多时候我们必须进行nonlinear transform.但是我们又无法确定Q的值.Q过小,那么Ein会很大:Q过大,就会出现过度拟合问题.如下图所示: 那么overfitting具体受什么因素影响呢? 现在我们又两个例子: 第一个例子的数据来源是:一个10-th的目标函数+noise:第二个例子的数据来源是:一个50-th的目标函数.现在我们用2-th函数(H2)和10-th函数(H1…
过拟合 过拟合(overfitting,过度学习,过度拟合): 过度准确地拟合了历史数据(精确的区分了所有的训练数据),而对新数据适应性较差,预测时会有很大误差. 过拟合是机器学习中常见的问题,解决方法主要有下面几种: 1. 增加数据量 大部分过拟合产生的原因是因为数据量太少. 2. 运用正则化 例如L1.L2 regularization等等,适用于大多数的机器学习,包括神经网络. 3. Dropout 专门用在神经网络的正则化的方法. Dropout regularization是指在深度学…
本节讲的是机器学习中出现的过拟合(overfitting)现象,以及解决过拟合的一些方法. 机器学习模型的自负又表现在哪些方面呢. 这里是一些数据. 如果要你画一条线来描述这些数据, 大多数人都会这么画. 对, 这条线也是我们希望机器也能学出来的一条用来总结这些数据的线. 这时蓝线与数据的总误差可能是10. 可是有时候, 机器过于纠结这误差值, 他想把误差减到更小, 来完成他对这一批数据的学习使命. 所以, 他学到的可能会变成这样 . 它几乎经过了每一个数据点, 这样, 误差值会更小 . 可是误…
1. 防止过拟合的方法有哪些? 过拟合(overfitting)是指在模型参数拟合过程中的问题,由于训练数据包含抽样误差,训练时,复杂的模型将抽样误差也考虑在内,将抽样误差也进行了很好的拟合. 产生过拟合问题的原因大体有两个:训练样本太少或者模型太复杂. 防止过拟合问题的方法: (1)增加训练数据. 考虑增加训练样本的数量 使用数据集估计数据分布参数,使用估计分布参数生成训练样本 使用数据增强 (2)减小模型的复杂度. a.减少网络的层数或者神经元数量.这个很好理解,介绍网络的层数或者神经元的数…
<从锅炉工到AI专家(6)>一文中,我们把神经网络模型降维,简单的在二维空间中介绍了过拟合和欠拟合的现象和解决方法.但是因为条件所限,在该文中我们只介绍了理论,并没有实际观察现象和应对. 现在有了TensorFLow 2.0 / Keras的支持,可以非常容易的构建模型.我们可以方便的人工模拟过拟合的情形,实际来操作监控.调整模型,从而显著改善模型指标. 从图中识别过拟合和欠拟合 先借用上一篇的两组图: 先看上边的一组图,随着训练迭代次数的增加,预测的错误率迅速下降. 我们上一篇中讲,达到一定…
1 函数拟合 函数拟合在工程(如采样校正)和数据分析(如隶属函数确定)中都是非常有用的工具.我这里将函数拟合分为三类:分别是多项式拟合,已知函数类型的拟合和未知函数类型的拟合.matlab中关于函数的拟合提供了很多的拟合函数,这里不再一一介绍.仅对常用的多项式拟合和已知函数类型的拟合中一部分matlab函数的使用进行介绍. 1.1多项式拟合 对于 形式的拟合函数,其中 为待定系数.我们可以使用matlab中的polyfit函数进行拟合.函数的调用形式为: coef = polyfit(xx,yy…
在Ubuntu上部署mysql服务并添加了一个非root用户后,发现无法远程连接, Navicat连接mysql出现2003——can't connect to mysql server on localhost(10061). 在网上搜索了一圈后,几乎都指向一个解决方案:修改配置文件/etc/mysql/my.cnf中的一项配置: bind-address = 127.0.0.1 改为: bind-address = 0.0.0.0 虽然大家都这么说,但是没有说明原因,于是我又找了一番,终于找…