概率分布之间的距离,顾名思义,度量两组样本分布之间的距离 . 1.卡方检验 统计学上的χ2统计量,由于它最初是由英国统计学家Karl Pearson在1900年首次提出的,因此也称之为Pearson χ2,其计算公式为 (i=1,2,3,…,k) 其中,Ai为i水平的观察频数,Ei为i水平的期望频数,n为总频数,pi为i水平的期望频率.i水平的期望频数Ei等于总频数n×i水平的期望概率pi.当n比较大时,χ2统计量近似服从k-1(计算Ei时用到的参数个数)个自由度的卡方分布. 卡方检验经常用来检…
1.f 散度(f-divergence) KL-divergence 的坏处在于它是无界的.事实上KL-divergence 属于更广泛的 f-divergence 中的一种. 如果P和Q被定义成空间中的两个概率分布,则f散度被定义为: 一些通用的散度,如KL-divergence, Hellinger distance, 和total variation distance,都是f散度的一种特例.只是f函数的取值不同而也. 在python中的实现 : import numpy as np imp…
1. 欧氏距离(Euclidean Distance)       欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式.(1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离:(2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离:(3)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的欧氏距离:(4)也可以用表示成向量运算的形式: python中的实现: 方法一: import numpy as np x=…
1. 欧氏距离(Euclidean Distance)        欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式. (1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离: (2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离: (3)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的欧氏距离: (4)也可以用表示成向量运算的形式: python中的实现: 方法一: import numpy as…
接上一篇:http://www.cnblogs.com/denny402/p/7027954.html 7. 夹角余弦(Cosine) 也可以叫余弦相似度. 几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异. (1)在二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式: (2) 两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n)的夹角余弦        类似的,对于两个n维样本点a(x11,x12,…,x1n…
转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时…
EARTH_REDIUS = 6378.137 def rad(d): return d * pi / 180.0 def getDistance(lat1, lng1, lat2, lng2): radLat1 = rad(lat1) radLat2 = rad(lat2) a = radLat1 - radLat2 b = rad(lng1) - rad(lng2) s = 2 * math.asin(math.sqrt(math.pow(sin(a/2), 2) + cos(radLat1…
机器学习算法 原理.实现与实践 —— 距离的度量 声明:本篇文章内容大部分转载于July于CSDN的文章:从K近邻算法.距离度量谈到KD树.SIFT+BBF算法,对内容格式与公式进行了重新整理.同时,文章中会有一些对知识点的个人理解和归纳补充,不代表原文章作者的意图. 1. 欧氏距离 欧氏距离是最常见的两点之间或多点之间的距离表示法,又称之为欧几里得度量,它定义于欧几里得空间中,如点 $x = (x_1,\cdots,x_n)$ 和$y = (y_2,\cdots,y_n)$之间的距离为: $$…
IOS 计算两个经纬度之间的距离 一 丶 -(double)distanceBetweenOrderBy:(double) lat1 :(double) lat2 :(double) lng1 :(double) lng2{ CLLocation *curLocation = [[CLLocation alloc] initWithLatitude:lat1 longitude:lng1]; CLLocation *otherLocation = [[CLLocation alloc] init…
   x = (x1,...,xn) 和y = (y1,...,yn) 之间的距离为 (1)欧氏距离   EuclideanDistanceMeasure (2)曼哈顿距离  ManhattanDistanceMeasure (3)马氏距离MahalanobisDistanceMeasure 马氏距离是由印度统计学家马哈拉诺比斯提出的,表示数据的协方差距离.它是一种有效的计算两个未知样本集的相似度的方法.与欧氏距离不同的是它考虑到各种特性之间的联系(例如:一条关于身高的信息会带来一条关于体重的信…