本文主要实现了伯乐在线上的一个实践小项目,原文链接,用以巩固opencv视频操作知识内容.整个项目均有代码注释,通俗易懂,短短几十行就可以达到还算不错的实现效果,做起来成就感满满哒.打开编辑器,一起来感受下opencv+python在CV中的无穷魅力吧 ^_^ import argparse import time import imutils import cv2 # 创建参数解析器并解析参数 ap = argparse.ArgumentParser() ap.add_argument("-v…
OpenCV + python 实现人脸检测(基于照片和视频进行检测) Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等. opencv api 要想使用opencv,就必须先知道其能干什么,怎么做.于是API的重要性便体现出来了.就本例而言,使用到的函数很少,也就普通的读取图片,灰度转换,显示图像,简单的编辑图像罢了. 如下: 读取图…
一言不和,先上码子(纯新手,莫嘲笑) # encoding: utf-8 #老杨的猫,环境:PYCHARM,python3.6,opencv3 import cv2,os import cv2.face as fc #此处有坑,找不到脸,这样引用程序可以运行,欢迎大牛指点,CV2和CV3的结构区别没有搞清楚,应该怎么样引用才是正确的 import numpy as np from PIL import Image, ImageDraw, ImageFont #pip install pillow…
使用 OpenCV 和 Python 对实时视频流进行深度学习目标检测是非常简单的,我们只需要组合一些合适的代码,接入实时视频,随后加入原有的目标检测功能. 在本文中我们将学习如何扩展原有的目标检测项目,使用深度学习和 OpenCV 将应用范围扩展到实时视频流和视频文件中.这个任务会通过 VideoStream 类来完成. 深度学习目标检测教程:http://www.pyimagesearch.com/2017/09/11/object-detection-with-deep-learning-…
一.运动目标检测简介   视频中的运动目标检测这一块现在的方法实在是太多了.运动目标检测的算法依照目标与摄像机之间的关系可以分为静态背景下运动检测和动态背景下运动检测.先简单从视频中的背景类型来讨论.        静态背景下的目标检测,就是从序列图像中将实际的变化区域和背景区分开了.在背景静止的大前提下进行运动目标检测的方法有很多,这些方法比较侧重于背景扰动小噪声的消除,如:1.背景差分法2.帧间差分法3.光流法4.混合高斯模型(GMM)5.码本(codebook)还有这些方法的变种,例如三帧…
作者:R语言和Python学堂 链接:https://www.jianshu.com/p/35cfc959b37c 1. 什么是目标检测? YOLO目标检测的一个示例 啥是目标检测? 拿上图 (用YOLOv3检测) 来说,目标检测 (Object Detection) 就是将图片中的物体用一个个矩形框框出来,并且识别出每个框中的物体是啥,而且最好的话是能够将图片的所有物体都框出来. 再来看下YOLOv3在视频上的效果: 总之,目标检测本质上包含两个任务:物体识别和物体定位. 2. 目标检测技术的…
SACON(SAmple CONsensus)算法是基于样本一致性的运动目标检测算法.该算法通过对每个像素进行样本一致性判断来判定像素是否为背景. 算法框架图 由上图可知,该算法主要分为四个主要部分,分别是邻域差分.SACON算法核心处理.空洞填充后处理.TOM(Time Out Map),其中TOM(Time Out Map)主要用于背景模型更新,其他部分属于前景目标检测. 背景模型建立 SACON算法建立背景模型的方法是直接取视频序列的前N帧作为背景模型. 对于每个像素而言,其背景模型可以表…
Python远程视频监控程序   老板由于事务繁忙无法经常亲临教研室,于是让我搞个监控系统,让他在办公室就能看到教研室来了多少人.o(>﹏<)o||| 最初我的想法是直接去网上下个软件,可是找来找去不是有毒就是收费,无奈技术不到家无法破解,只得另寻他法. 正当没有办法的时候,我看到一篇博文 一个基于python的高速视频传输程序 ,看完茅塞顿开,觉得完全可以自己写一个,在此感谢作者詹姆斯. 这个程序包括一个服务器和一个客户端.需要的库有 VideoCapture 和 pygame,一个用来得到…
视频人脸检测是图片人脸检测的高级版本,图片检测详情点击查看我的上一篇<图片人脸检测——OpenCV版(二)> 实现思路: 调用电脑的摄像头,把摄像的信息逐帧分解成图片,基于图片检测标识出人脸的位置,把处理的图片逐帧绘制给用户,用户看到的效果就是视频的人脸检测. 效果预览: 实现步骤 使用OpenCV调用摄像头并展示 获取摄像头: cap = cv2.VideoCapture(0) 参数0表示,获取第一个摄像头. 显示摄像头 逐帧显示,代码如下: while (1): ret, img = ca…
往期目录 视频人脸检测--Dlib版(六) OpenCV添加中文(五) 图片人脸检测--Dlib版(四) 视频人脸检测--OpenCV版(三) 图片人脸检测--OpenCV版(二) OpenCV环境搭建(一) 更多更新,欢迎访问我的github:https://github.com/vipstone/faceai 前言 Dlib的人脸识别要比OpenCV精准很多,一个是模型方面的差距,在一方面和OpenCV的定位有关系,OpenCV是一个综合性的视觉处理库,既然这么精准,那就一起赶快来看吧. 视…