首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Hadoop学习总结之Map-Reduce的过程解析111
】的更多相关文章
Hadoop学习总结之四:Map-Reduce的过程解析
转:http://www.cnblogs.com/forfuture1978/archive/2010/11/19/1882268.html…
Hadoop 2.4.1 Map/Reduce小结【原创】
看了下MapReduce的例子.再看了下Mapper和Reducer源码,理清了参数的意义,就o了. public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> public class Reducer<KEYIN,VALUEIN,KEYOUT,VALUEOUT> Map是打散过程,把输入的数据,拆分成若干的键值对.Reduce是重组的,根据前面的键值对,重组数据. 自己写Map/Reduce的话,理解了如何拆分数据.组装数据,理解了…
C#、JAVA操作Hadoop(HDFS、Map/Reduce)真实过程概述。组件、源码下载。无法解决:Response status code does not indicate success: 500。
一.Hadoop环境配置概述 三台虚拟机,操作系统为:Ubuntu 16.04. Hadoop版本:2.7.2 NameNode:192.168.72.132 DataNode:192.168.72.135,192.168.72.136 注:具配置过程,不具备介绍了,网上很多. 二.eclipse(JAVA)环境配置概述 操作系统:Windows 10 eclipse版本:Mars.2 Release (4.5.2) 1.hadoop-eclipse-plugin-2.7.2.jar组件放plu…
Hadoop学习总结之Map-Reduce的过程解析111
一.客户端 Map-Reduce的过程首先是由客户端提交一个任务开始的. 提交任务主要是通过JobClient.runJob(JobConf)静态函数实现的: public static RunningJob runJob(JobConf job) throws IOException { //首先生成一个JobClient对象 JobClient jc = new JobClient(job); …… //调用submitJob来提交一个任务 running = jc.submitJo…
Hadoop 使用Combiner提高Map/Reduce程序效率
众所周知,Hadoop框架使用Mapper将数据处理成一个<key,value>键值对,再网络节点间对其进行整理(shuffle),然后使用Reducer处理数据并进行最终输出. 在上述过程中,我们看到至少两个性能瓶颈: 如果我们有10亿个数据,Mapper会生成10亿个键值对在网络间进行传输,但如果我们只是对数据求最大值,那么很明显的Mapper只需要输出它所知道的最大值即可.这样做不仅可以减轻网络压力,同样也可以大幅度提高程序效率. 使用专利中的国家一项来阐述数据倾斜这个定义.这样的数据远…
Lucene学习总结之七:Lucene搜索过程解析
一.Lucene搜索过程总论 搜索的过程总的来说就是将词典及倒排表信息从索引中读出来,根据用户输入的查询语句合并倒排表,得到结果文档集并对文档进行打分的过程. 其可用如下图示: 总共包括以下几个过程: IndexReader打开索引文件,读取并打开指向索引文件的流. 用户输入查询语句 将查询语句转换为查询对象Query对象树 构造Weight对象树,用于计算词的权重Term Weight,也即计算打分公式中与仅与搜索语句相关与文档无关的部分(红色部分). 构造Scorer对象树,用于计算打分(T…
Lucene学习总结之七:Lucene搜索过程解析 2014-06-25 14:23 863人阅读 评论(1) 收藏
一.Lucene搜索过程总论 搜索的过程总的来说就是将词典及倒排表信息从索引中读出来,根据用户输入的查询语句合并倒排表,得到结果文档集并对文档进行打分的过程. 其可用如下图示: 总共包括以下几个过程: IndexReader打开索引文件,读取并打开指向索引文件的流. 用户输入查询语句 将查询语句转换为查询对象Query对象树 构造Weight对象树,用于计算词的权重Term Weight,也即计算打分公式中与仅与搜索语句相关与文档无关的部分(红色部分). 构造Scorer对象树,用于计算打分(T…
Hadoop学习总结之五:Hadoop的运行痕迹
Hadoop学习总结之五:Hadoop的运行痕迹 Hadoop 学习总结之一:HDFS简介 Hadoop学习总结之二:HDFS读写过程解析 Hadoop学习总结之三:Map-Reduce入门 Hadoop学习总结之四:Map-Reduce的过程解析 在使用hadoop的时候,可能遇到各种各样的问题,然而由于hadoop的运行机制比较复杂,因而出现了问题的时候比较难于发现问题. 本文欲通过某种方式跟踪Hadoop的运行痕迹,方便出现问题的时候可以通过这些痕迹来解决问题. 一.环境的搭建 为了能…
Hadoop Map/Reduce教程
原文地址:http://hadoop.apache.org/docs/r1.0.4/cn/mapred_tutorial.html 目的 先决条件 概述 输入与输出 例子:WordCount v1.0 源代码 用法 解释 Map/Reduce - 用户界面 核心功能描述 Mapper Reducer Partitioner Reporter OutputCollector 作业配置 任务的执行和环境 作业的提交与监控 作业的控制 作业的输入 InputSplit RecordReader 作业的…
hadoop学习笔记(八):MapReduce
一.MapReduce编程模型 一种分布式计算框架,解决海量数据的计算问题. MapReduce将整个并行计算过程抽象到两个函数: Map(映射):对一些独立元素组成的列表的每一个元素进行制定的操作,可以高度并行. Reduce(化简):对一个列表的元素进行合并. 一个简单的MapReduce程序只需要指定Map().reduce().input和output,剩下的事情由框架完成. 二.Map过程(以wordcount为例): 1 一行一行读,每一行都解析成key/value形式.每一个键值对…