1 二分类( Binary Classification ) 逻辑回归是一个二分类算法.下面是一个二分类的例子,输入一张图片,判断是不是猫. 输入x是64*64*3的像素矩阵,n或者nx代表特征x的数量,y代表标签0/1,m代表训练集的样本总数. 本门课中:X代表所有的输入x,x按列排列,每个x是一个列向量,X的shape是( n, m ). 同理Y也按列排序,shape为( 1, m ). 2 逻辑回归( Logistic Regression ) 给定一个输入x ( 比如图像),你想得到一个…
深度学习课程笔记(一)CNN 解析篇 相关资料来自:http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML17_2.html 首先提到 Why CNN for Image ? 综合上述三个特点,我们可以看到图像识别有如下的特色: =================================== 分割线 ======================================================= 以上就是整体上来感受下深度神经网络,接下…
深度学习课程笔记(十二) Matrix Capsule with EM Routing  2018-02-02  21:21:09  Paper: https://openreview.net/pdf/99b7cb0c78706ad8e91c13a2242bb15b7de325ad.pdf  Blog: https://jhui.github.io/2017/11/14/Matrix-Capsules-with-EM-routing-Capsule-Network/  [Abstract] 一个…
深度学习课程笔记(十一)初探 Capsule Network  2018-02-01  15:58:52 一.先列出几个不错的 reference: 1. https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b 2. https://medium.com/ai%C2%B3-theory-practice-bus…
深度学习课程笔记(四)Gradient Descent 梯度下降算法 2017.10.06 材料来自:http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS17.html    我们知道在神经网络中,我们需要求解的是一个最小化的问题,即:最小化 loss function. 假设我们给定一组初始的参数 $\theta$,那么我们可以算出在当前参数下,这个loss是多少,即表示了这个参数到底有多不好. 然后我们利用上述式子来调整参数,其中梯度可以用▽的形式…
深度学习课程笔记(十五)Recurrent Neural Network 2018-08-07 18:55:12 This video tutorial can be found from: Youtube  Issue: 传统方法中,当你的训练数据中,没有那么丰富的 training data,那么可能会导致部分数据的预测为 0,如上图所示.为了不让它变成 0,所以,我们给它一个非常小的 value,如:0.0001.但是这种给定的低概率的 value,是相当不准确的. 所以,我们想能否有一种…
深度学习课程笔记(七):模仿学习(imitation learning) 2017.12.10 本文所涉及到的 模仿学习,则是从给定的展示中进行学习.机器在这个过程中,也和环境进行交互,但是,并没有显示的得到 reward.在某些任务上,也很难定义 reward.如:自动驾驶,撞死一人,reward为多少,撞到一辆车,reward 为多少,撞到小动物,reward 为多少,撞到 X,reward 又是多少,诸如此类...而某些人类所定义的 reward,可能会造成不可控制的行为,如:我们想让 a…
深度学习课程笔记(五)Ensemble  2017.10.06 材料来自: 首先提到的是 Bagging 的方法: 我们可以利用这里的 Bagging 的方法,结合多个强分类器,来提升总的结果.例如: 通过这种求平均的方法,可以得到更加接近 真实值的输出. 我们可以对训练数据集进行随机采样,构建四个子数据集,然后分别对这些数据进行分类器的训练,得到多个强分类器. 上面是训练的情况,当测试的时候,我们可以将多个分类器的结果综合起来,得到最终的结果. ==>> 这些方法在你的模型比较复杂,容易过拟…
深度学习课程笔记(三)Backpropagation 反向传播算法 2017.10.06  材料来自:http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS17.html 反向传播算法这里是用到 chain rule(链式法则)的,如下图所示: 这个应该没什么问题.大家都学过的. 我们知道总的loss 是由各个小的 loss 组合得到的,那么我们在求解 Loss 对每一个参数的微分的时候,只要对每一个 loss 都这么算就可以了.那么我们以后的例子都是以…
深度学习课程笔记(二)Classification: Probility Generative Model  2017.10.05 相关材料来自:http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS17.html 本节主要讲解分类问题: classification 问题最常见的形式,就是给定一个输入,我们去学习一个函数,使得该函数,可以输出一个东西(label).如下所示: 其实好多其他的问题,都是分类问题演化而来,都可以通过分类问题来解决,如:物体…
深度学习课程笔记(十八)Deep Reinforcement Learning - Part 1 (17/11/27) Lectured by Yun-Nung Chen @ NTU CSIE 2018-08-11 13:42:23 This video can be found from: https://www.youtube.com/watch?v=yQdD_R_I6vc  Slides: https://www.csie.ntu.edu.tw/~yvchen/f106-adl/doc/1…
深度学习课程笔记(十七)Meta-learning (Model Agnostic Meta Learning) 2018-08-09 12:21:33 The video tutorial can be found from: Model Agnostic Meta Learning Related Videos: My talk for Model Agnostic Meta Learning with domain adaptation Paper: https://arxiv.org/p…
深度学习课程笔记(十六)Recursive Neural Network  2018-08-07 22:47:14 This video tutorial is adopted from: Youtube =====>>  问题是:language 到底是否是 recursive 的呢? ======>> 上述几个图,就展示了这个语法树的成长过程... ================================================== ========>&g…
深度学习课程笔记(十四)深度强化学习 ---  Proximal Policy Optimization (PPO) 2018-07-17 16:54:51  Reference: https://blog.openai.com/openai-baselines-ppo/ Code: https://github.com/openai/baselines Paper: https://arxiv.org/pdf/1707.06347.pdf Video Tutorials: https://ww…
深度学习课程笔记(十三)深度强化学习 --- 策略梯度方法(Policy Gradient Methods) 2018-07-17 16:50:12 Reference:https://www.youtube.com/watch?v=z95ZYgPgXOY&t=512s…
深度学习课程笔记(十)Q-learning (Continuous Action) 2018-07-10 22:40:28 reference:https://www.youtube.com/watch?v=tnPVcec22cg…
深度学习课程笔记(九)VAE 相关推导和应用 2018-07-10 22:18:03 Reference: 1. TensorFlow code: https://jmetzen.github.io/2015-11-27/vae.html 2. Paper: https://arxiv.org/pdf/1312.6114.pdf…
深度学习课程笔记(八)GAN 公式推导 2018-07-10  16:15:07…
深度学习课程笔记(六)Error Variance and Bias: 本文主要是讲解方差和偏差: error 主要来自于这两个方面.有可能是: 高方差,低偏差: 高偏差,低方差: 高方差,高偏差: 低方差,低偏差--- 这是理想情况 ================================================================================= 随着模型复杂度的上升,那么,bias 会逐渐降低的.…
Andrew Ng机器学习课程笔记(二)之逻辑回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364636.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录了Andrew Ng课程第二章逻辑回归,主要介绍了梯度下降法,逻辑回归的损失函数,多类别分类等等 简要介绍:逻辑回归算法是分类算法,我们将它作为分类算法使用.有时候…
深度学习概论 1.什么是神经网络? 2.用神经网络来监督学习 3.为什么神经网络会火起来? 1.什么是神经网络? 深度学习指的是训练神经网络.通俗的话,就是通过对数据的分析与计算发现自变量与因变量的映射关系(神经网络模型),这个映射关系可以是单层(一个神经元),也可以是网络(多个神经元),此过程可称为训练过程:其后根据此神经网络模型来对事物进行预测或分类. 通过一个例子来说明何为神经网络.房价的预测,影响房价的因素有很多,现在仅考虑房间大小,即只有一维特征.下图的红叉代表已知价格的房子大小,通过…
标量(0D 张量) 仅包含一个数字的张量叫作标量(scalar,也叫标量张量.零维张量.0D 张量).在Numpy 中,一个float32 或float64 的数字就是一个标量张量(或标量数组).你可以用ndim 属性 来查看一个Numpy 张量的轴的个数.标量张量有0 个轴(ndim == 0).张量轴的个数也叫作 阶(rank).下面是一个Numpy 标量. >>> import numpy as np >>> x = np.array(12) >>&g…
 =================第2周 神经网络基础=============== ===4.1  深层神经网络=== Although for any given problem it might be hard to predict in advance exactly how deep a neural network you would want,so it would be reasonable to try logistic regression,try one and then…
 =================第1周 循环序列模型=============== ===1.1 欢迎来到深度学习工程师微专业=== 我希望可以培养成千上万的人使用人工智能,去解决真实世界的实际问题,创造一个人工智能驱动的社会. ===1.2 什么是神经网络=== 实际上隐藏节点可能并没有左图那样明确的定义,你让神经网络自己决定这个节点是什么,我们只给你四个输入特征 随便你怎么计算.注意,当我们计算层数的时候,不计算输出层. ===1.3 用神经网络进行监督学习=== And then, f…
神经网络剖析   训练神经网络主要围绕以下四个方面: 层,多个层组合成网络(或模型) 输入数据和相应的目标 损失函数,即用于学习的反馈信号 优化器,决定学习过程如何进行   如图 3-1 所示:多个层链接在一起组成了网络,将输入数 据映射为预测值.然后损失函数将这些预测值与目标进行比较,得到损失值,用于衡量网络预 测值与预期结果的匹配程度.优化器使用这个损失值来更新网络的权重.  …
浅层神经网络 1.激活函数 在神经网络中,激活函数有很多种,常用的有sigmoid()函数,tanh()函数,ReLu函数(修正单元函数),泄露ReLu(泄露修正单元函数).它们的图形如下: sigmoid()激活函数,范围是y属于{0, 1},所以0<= y <=1.但是sigmoid函数平均收敛是1,最后的效果可能不太好. 在这个基础上有了tanh激活函数.图形如下: 主要是把sigmoid函数平移得到的.但是这样会有了优化,最终的平均收敛值为0,训练效果更好.所以在实际中,一般是选用ta…
 =================第3周 浅层神经网络=============== ===3..1  神经网络概览=== ===3.2  神经网络表示=== ===3.3  计算神经网络的输出=== 方括号代表层数.   ===3.4  多个例子中的向量化=== ===3.5  向量化实现的解释===  方括号值的是层数,括号代表样本编号.ppt中显示的,不同row代表某一层的hidden unit,不同列代表各个样本,挺形象的呀,有趣.   ===3.6  激活函数=== tanh几乎各方…
Logistic Regression 逻辑回归 1.模型 逻辑回归解决的是分类问题,并且是二元分类问题(binary classification),y只有0,1两个取值.对于分类问题使用线性回归不行,因为直线无法将样本正确分类. 1.1 Sigmoid Function 因为 y∈{0,1},我们也希望 hθ(x)∈{0,1}.第一种选择是 logistic函数或S型函数(logistic function/sigmoid function).g(z)值的范围在0-1之间,在z=0时为0.5…
 =================第2周 神经网络基础=============== ===2.1  二分分类=== ===2.2  logistic 回归=== It turns out, when you implement you implement your neural network, it will be easier to just keep b and w as separate parameters. 本课程中将分开考虑它们. ===2.3  logistic 回归损失函数…
神经网络基础 1.图计算 计算时有两种方法:正向传播和反向传播.正向传播是从底层到顶层的计算过程,逐步推出所求公式.反向传播是从顶层到底层,从已知的式子求出因变量的影响关系. 在这里用到的反向传播算法就是为了通过似然函数(成本函数)来确定要计算的参数. 在这里,logistic回归应用了反向传播,主要是为了方便梯度下降算法的计算,来逐次逼近w和b.通过图片看到,反向传播其实就是微积分里的“链式法则”.这块可能要补补微积分才能更深入学习.这里先跳过,反正是明白了logistic回归中的梯度下降应用…