使用numpy产生随机数】的更多相关文章

numpy中的random模块包含了很多方法可以用来产生随机数,这篇文章将对random中的一些常用方法做一个总结. 1.numpy.random.rand(d0, d1, ..., dn) 作用:产生一个给定形状的数组(其实应该是ndarray对象或者是一个单值),数组中的值服从[0, 1)之间的均匀分布. 参数:d0, d, ..., dn : int,可选.如果没有参数则返回一个float型的随机数,该随机数服从[0, 1)之间的均匀分布. 返回值:ndarray对象或者一个float型的…
如果你想说,我不想知道里面的逻辑和实现方法,只想要python生成随机数的代码,请移步本文末尾,最简单的demo帮你快速获取实现方法. 先开始背景故事说明: 在数据分析中,数据的获取是第一步,numpy.random 模块提供了非常全的自动产生数据API,是学习数据分析的第一步. 总体来说,numpy.random模块分为四个部分,对应四种功能: 1. 简单随机数: 产生简单的随机数据,可以是任何维度 2. 排列:将所给对象随机排列 3. 分布:产生指定分布的数据,如高斯分布等 4. 生成器:种…
class numpy.random.RandomState(seed=None) RandomState 是一个基于Mersenne Twister算法的伪随机数生成类 RandomState 包含很多生成 概率分布的伪随机数 的方法. 如果指定seed值,那么每次生成的随机数都是一样的.即对于某一个伪随机数发生器,只要该种子相同,产生的随机数序列就是相同的. numpy.random.RandomState.rand(d0, d1, ..., dn) Random values in a g…
转自:http://blog.csdn.net/jinxiaonian11/article/details/53143141 在数据分析中,数据的获取是第一步,numpy.random 模块提供了非常全的自动产生数据API,是学习数据分析的第一步. 总体来说,numpy.random模块分为四个部分,对应四种功能: 1. 简单随机数: 产生简单的随机数据,可以是任何维度 2. 排列:将所给对象随机排列 3. 分布:产生指定分布的数据,如高斯分布等 4. 生成器:种随机数种子,根据同一种子产生的随…
NumPy基础操作(3)--代数运算和随机数 (注:记得在文件开头导入import numpy as np) 目录: NumPy在矩阵运算中的应用 常用矩阵运算函数介绍 编程实现 利用NumPy生成随机数以及随机漫步 常用随机数生成函数介绍 编程实现 随机漫步编程实现 NumPy在矩阵运算中的应用 常用矩阵运算函数介绍 常用的numpy函数 diag 将一维数组转换为方阵,一维数组元素为方阵对角线元素 dot 矩阵点乘运算 trace 计算对角线元素的和 det 计算矩阵的行列式 eig 计算方…
随机数种子 要每次产生随机数相同就要设置种子,相同种子数的Random对象,相同次数生成的随机数字是完全相同的: random.seed(1) 这样random.randint(0,6, (4,5))每次都产生一样的4*5的随机矩阵 关于种子的介绍可参见[Java - 常用函数Random函数] Python标准库random模块(生成随机数模块) random.random() random.random(),同 javascript 的 Math.random(),返回 [0, 1.0) 之…
python-numpy csv文件的写入和存取 写入csv文件 CSV (Comma‐Separated Value, 逗号分隔值),是一种常见的文件格式,用来存储批量数据. 写入csv文件 np.savetxt(frame, array, fmt='%.18e', delimiter=None) • frame : 文件.字符串或产生器,可以是.gz或.bz2的压缩文件 • array : 存入文件的数组 • fmt : 写入文件的格式,例如:%d %.2f %.18e • delimite…
一.Numpy简介: Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列表的元素可以是任何对象,因此列表中所保存的是对象的指针.这样为了保存一个简单的[1,2,3],需要有3个指针和三个整数对象.对于数值运算来说这种结构显然比较浪费内存和CPU计算时间.此外Python还提供了一个array模块,array对象和列表不同,它直接保存数值,和C语言的一维数组比较类似.但是由于它不支持多维,也没有各种运算函数,因此也不适合做数值运算. NumPy提供了两种基本的对象:nda…
NumPy库入门 NumPy数据存取和函数 数据的CSV文件存取 CSV文件 CSV(Comma-Separated Value,逗号分隔值)是一种常见的文件格式,用来存储批量数据. np.savetxt(frame,array,fmt='%.18e',delimiter=None) frame:文件.字符串或产生器,可以是.gz或.bz2的压缩文件. array:存入文件的数组. fmt:写入文件的格式,例如:%d %.2f %.18e. delimiter:分割字符串,默认是任何空格. 范例…
数据的CSV文件的存取 CSV文件:CSV (Comma‐Separated Value, 逗号分隔值) CSV是一种常见的文件格式,用来存储批量数据 np.savetxt(frame, array, fmt='%.18e', delimiter=None) • frame : 文件.字符串或产生器,可以是.gz或.bz2的压缩文件 • array : 存入文件的数组 • fmt : 写入文件的格式,例如:%d %.2f %.18e • delimiter : 分割字符串,默认是任何空格 CSV…
笔记内容整理自mooc上北京理工大学嵩天老师python系列课程数据分析与展示,本人小白一枚,如有不对,多加指正 1.ndarray对象的属性 .ndim..shape..size(元素个数,不是占用内存大小)..dtype..itemsize 2.创建ndarray数组的方式 2.1一共有三种np.ndarray().函数创建法.字节流创建 2.2主要记录一下常用的函数创建ndarray的方法np.arange(n)   np.ones(shape)   np.zeros(shape)   u…
简介 一:数据的CSV文件存取(一维或二维) (一)写入文件savetxt (二)读取文件loadtxt 二:多维数据的存取 (一)保存文件tofile (二)读取文件fromfile (三)NumPy 的便捷文件存取save/savez或load 三:NumPy的随机数函数(random模块) rand()均匀分布 randn()标准正态分布,有几个参数,代表有几个维度 randint()整数数组 seed()随机数种子 shuffle()根据数组第一轴产生一个新的乱序数组(在原数组基础) p…
前言 numpy是一个很基础很底层的模块,其重要性不言而喻,可以说对于新手来说是最基础的入门必须要学习的其中之一.在很多数据分析,深度学习,机器学习亦或是人工智能领域的模块中,很多的底层都会用到这个模块,是必知必会的一个基础模块. 那么numpy作为这么基础的一个模块,它是干什么的,它的主要功能是处理什么的,我可以直接告诉你,numpy主要用于数组的批量运算. anaconda的安装 anaconda是一个开源的python版本,其包含了大量用于科学计算的包以及依赖项,所以数据分析或者科学计算,…
数据的CSV文件存取 多维数据的存取 NumPy的随机数函数 NumPy的统计函数 NumPy的梯度函数…
目录 numpy模块 一维数组 二维数组(用的最多的) 获取多维数组的行和列 多维数组的索引 高级功能 多维数组的元素的替换 通过函数方法创建多维数组 矩阵的运算 点乘和转置(了解) 点乘必须 m*n n *m 求逆(了解) 最大 小值 numpy生成随机数 numpy模块 回顾一下有哪些数据类型 int/float/str/list/tuple/dict/set numpy是python一种开源的数值计算扩展库.这种库可用来存储和处理大型矩阵,比python自身的嵌套列表结构要高效的多(该结构…
1 基本 1.1 基本介绍 掌握表示, 清洗, 统计和展示数据的能力 Numpy, Matplotlib, Pandas, Projects 摘要: 有损的提取数据特征的过程 可以将一组数据, 摘要出 1) 基本统计(排序) 2) 分布/累计统计 3) 数据特征 相关性, 周期性等 4) 数据挖掘(形成知识) 1.2 Anaconda Anaconda是数据分析的基本工具 具体有 1) 开源免费 2) 支持800多个第三方库 3) 包含多个主流工具 4) 适合数据计算领域开发 5) 全平台支持…
目录 numpy模块 一维数组 二维数组 列表list和numpy的区别 获取多维数组的行和列 多维数组的索引 高级功能 多维数组的合并 通过函数方法创建多维数组 矩阵的运算 求最大值最小值 numpy生成随机数 pandas模块 pandas模块有什么用 Series(了解) DataFrame(掌握) 处理缺失值 合并数据 matplotlib模块 matplotlib模块有什么用? numpy模块 numpy模块导入时,注意需要设置别名为 np 一维数组 只有一行,相当于一条线 # 生成一…
NumPy数据存取与函数 数据的CSV文件存取 CSV文件 CSV(Comma-Separated Value,逗号分隔值) CSV是一种常见的文件格式,用来存储批量数据. 将数据写入CSV文件 np.savetxt(frame, array, fmt='%.18e', delimiter=None) -frame: 文件.字符串或产生器,可以是.gz或.bz2的压缩文件 -array: 存入文件的数组 -fmt: 写入文件的格式,例如:%d %.2f %.18e -delimiter:分割字符…
numpy 模块(多维数组) import numpy as np arr=np.array([1,2,3,4],[5,6,7,8]) print(arr) #[[1 2 3 4] #[5 6 7 8]] arr.shape #(2, 4) 得到的是这个数组有多少行 多少列 #多维数组的索引 arr.shape[0] #2 得到的是行数 arr.shape[1] #4 得到的是列数 arr[1,2] #7 按索引取值 高级功能 import numpy as ap arr = np.array(…
目录 numpy array 一维数组 二维数组(用的最多) np.array和list的区别 获取多维数组的行和列 多维数组的索引 高级功能 多维数组的元素替换 多维数组的合并 通过函数方法创建多维数组 创建一维数组 创建多维数组 矩阵的运算 点乘,转置,求逆(了解,数学知识) 极值 numpy生成随机数 固定随机数,让它不随机 三维数组(了解) numpy 多维数组(列表)的运算 # 约定俗成定义为np import numpy as np array 数据类型,有点像列表 一维数组 只有一…
目录 numpy模块 切割矩阵 矩阵元素替换 矩阵的合并 通过函数创建矩阵 fromstring/fromfunctions 矩阵的运算 常用矩阵运函数 矩阵的点乘 矩阵的逆 矩阵的其他操作 numpy生成随机数 numpy模块 numpy官方文档:[https://docs.scipy.org/doc/numpy/reference/?v=20190307135750] import numpy as np arr = np.array([1,2,3]) print(arr, type(arr…
其实在代码的开头添加下面几句话即可: # 保证训练时获取的随机数都是一样的 init_seed = torch.manual_seed(init_seed) torch.cuda.manual_seed(init_seed) np.random.seed(init_seed) # 用于numpy的随机数 torch.manual_seed(seed) 为了生成随机数设置种子.返回一个torch.Generator对象 参数: seed (int) – 期望的种子数 torch.cuda.manu…
使用numpy生成数字 生成的类型是ndarray类型 t1 = np.array([1,2,3,4,5]) print(t1,type(t1)) # 类型为ndarray t2 = np.array(range(10)) print(t2) t3 = np.arange(10) # 相当于array+range print(t3,t3.dtype) # dtype 可以查看数组内的数据类型 t4 = np.arange(10,dtype="f2") # 制定数据类型 print(t4…
1.数据csv文件存贮 1.1 CSV文件写入 CSV (Comma‐Separated Value, 逗号分隔值)CSV是一种常见的文件格式,用来存储批量数据 np.savetxt(frame, array, fmt='%.18e', delimiter=None) • frame : 文件.字符串或产生器,可以是.gz或.bz2的压缩文件 • array : 存入文件的数组 • fmt : 写入文件的格式,例如:%d %.2f %.18e • delimiter : 分割字符串,默认是任何空…
numpy是Python中经常要使用的一个库,而其中的random模块经常用来生成一些数组,本文接下来将介绍numpy中random模块的一些使用方法. 首先查看numpy的版本: import numpy numpy.__version__ '1.18.2' numpy获得随机数有两种方式: 结合BitGenerator生成伪随机数 结合Generate从一些统计分布中采样生成伪随机数 BitGenerator:生成随机数的对象.包含32或64位序列的无符号整数 Generator:将从Bit…
NumPy之:ndarray中的函数 目录 简介 简单函数 矢量化数组运算 条件逻辑表达式 统计方法 布尔数组 排序 文件 线性代数 随机数 简介 在NumPy中,多维数组除了基本的算数运算之外,还内置了一些非常有用的函数,可以加快我们的科学计算的速度. 简单函数 我们先看下比较常见的运算函数,在使用之前,我们先构造一个数组: arr = np.arange(10) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 计算数组中元素的开方: np.sqrt(arr) ar…
1.数组的拼接 import numpy as np t1 = np.array([[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]]) t2 = np.array([[12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23]]) print(np.vstack((t1, t2))) # 竖直拼接 print(np.hstack((t1, t2))) # 水平拼接 [[ 0 1 2 3 4 5] [ 6 7 8 9 10…
import numpy as np Numpy 一元函数 对ndarray中的数据执行元素级运算的函数 np.abs(x) np.fabs(x) 计算数组各元素的绝对值 np.sqrt(x) 计算数组各元素的平方根 np.square(x) 计算数组各元素的的平方 np.log(x) np.log10(x) np.log2(x) 计算数组各元素的自然对数,10底对数和2底对数 np.ceil(x) np.floor(r) 计算数组各元素的ceiling值或floor值 np.rint(x) 计…
Numpy数据存取 •NumPy的随机数函数 a = np.random.rand(1,2,3) print(a) #[[[0.03339719 0.72784732 0.47527802] # [0.6456671 0.65639799 0.01300073]]] a = np.random.randn(1,2,3) print(a) #[[[ 0.59115211 -0.40289048 1.34532466] # [-0.04616715 -0.64066822 -1.09722129]]…
来自:http://deeplearning.net/software/theano/tutorial/extending_theano.html Extending Theano 该教程覆盖了如何使用新颖的ops来扩展theano.它主要关注哪些能够提供一个python实现的ops.而Extending Theano with a C Op 是基于c的op实现.该教程的第一部分介绍了theano的graphs,因为提供一个新颖的theano op需要对theano graphs有个基本的理解.…