BZOJ2134——单选错位】的更多相关文章

bzoj2134单选错位 题意: 试卷上n道选择题,每道分别有ai个选项.某人全做对了,但第i道题的答案写在了第i+1道题的位置,第n道题答案写在第1题的位置.求期望能对几道.n≤10000000 题解: 水题,然而我不会.第i题与第i+1题答案一样的概率是1/max(aiai+1) 代码: #include <cstdio> #include <algorithm> using namespace std; int a[],n,A,B,C; int main(){ scanf(&…
1.题意:这就是说考试的时候抄串了一位能对几个(雾) 2.分析:这是一个期望问题,期望就是平均,E(a+b)=E(a)+E(b),所以我们直接算出每个点能对几个就好,那么就是1/max(a[i],a[i%n+1])就好,最后加起来 #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> using namespace std; #define LL long l…
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2134 题解:因为每个答案之间是互不影响的,所以我们可以挨个计算. 假设当前在做 i 题目,如果a[i+1]>=a[i],那么我们只需要让i+1题目的答案是i的答案即可,ans+=1/a[i+1] 否则 i 题目的答案必须在1--a[i+1],所以ans+=a[i+1]/a[i]*1/a[i+1]=1/a[i] 换句话说 ans+=min(1/a[i+1],1/a[i]) 代码: #inclu…
预处理前后缀异或和,用trie得到前后缀最大答案,枚举中间点把左右两边加起来就是当前中间点的最大答案了...这个操作没见过,比较有意思,记录一下 #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> #include<algorithm> #define ll long long using namespace std; , inf=1e9; ];}tree…
Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1101  Solved: 851[Submit][Status][Discuss] Description Input n很大,为了避免读入耗时太多, 输入文件只有5个整数参数n, A, B, C, a1, 由上交的程序产生数列a. 下面给出pascal/C/C++的读入语句和产生序列的语句(默认从标准输入读入):  // for pascal  readln(n,A,B,C,q[1]);  for…
单选错位 [问题描述] gx和lc去参加noip初赛,其中有一种题型叫单项选择题,顾名思义,只有一个选项是正确答案.试卷上共有n道单选题,第i道单选题有ai个选项,这ai个选项编号是1,2,3,…,ai,每个选项成为正确答案的概率都是相等的.lc采取的策略是每道题目随机写上1-ai的某个数作为答案选项,他用不了多少时间就能期望做对道题目.gx则是认认真真地做完了这n道题目,可是等他做完的时候时间也所剩无几了,于是他匆忙地把答案抄到答题纸上,没想到抄错位了:第i道题目的答案抄到了答题纸上的第i+1…
第i个填到第i+1个的期望得分显然是1/max(a[i],a[i+1]).根据期望的线性性, 我们只需将每个选项的期望值累加即可. --------------------------------------------------------------------------- #include<bits/stdc++.h>   using namespace std;   typedef long long ll;   const int maxn = 10000009;   int a…
BZOJ_2134_单选错位——期望DP 题意: 分析:设A为Ai ∈ [1,ai+1] 的概率,B为Ai = A(imodn+1)的概率显然P(A|B) = 1,那么根据贝叶斯定理P(B) = P(B|A)*P(A)P(A) = min(ai,ai+1)/aiP(B|A) = 1/a(i+1)P(B) = min(ai,ai+1)/(ai*a(i+1))又因为期望的可加性,直接加起来统计答案 代码: #include <stdio.h> #include <string.h> #…
P1297 [国家集训队]单选错位 期望入门 我们考虑涂到第$i$道题时的情况 此时题$i$答案有$a[i]$种,我们可能涂$a[i+1]$种 分类讨论: 1.$a[i]>=a[i+1]$: 可能涂到答案的概率为$(a[i+1]/a[i])*(1/a[i+1])=1/a[i]$,贡献为1 没涂到的概率为$1-1/a[i]$,贡献为0 期望值:$1*(1/a[i])+0*(1-1/a[i])=1/a[i]$ 2.$a[i]<a[i+1]$: 可能涂到答案的概率为$(a[i]/a[i+1])*(1…
P1297 [国家集训队]单选错位 题目背景 原 <网线切割>请前往P1577 题目描述 gx和lc去参加noip初赛,其中有一种题型叫单项选择题,顾名思义,只有一个选项是正确答案.试卷上共有n道单选题,第i道单选题有ai个选项,这ai个选项编号是1,2,3,…,ai,每个选项成为正确答案的概率都是相等的.lc采取的策略是每道题目随机写上1-ai的某个数作为答案选项,他用不了多少时间就能期望做对 \sum_{i=1}^n \frac{1}{a_i}∑i=1n​ai​1​ 道题目.gx则是认认真…