【实变函数】四、Lebesgue积分】的更多相关文章

1 Riemann 积分的局限性 (1) Riemann 积分与极限的条件太严:    $$\bex    f_k\rightrightarrows f\ra \lim \int_a^b f_k    =\int_a^b \lim f_k.    \eex$$ 这 ``一致收敛'' 极大地限制了 Riemann 积分的应用. (2) 积分运算不完全是微分运算的逆运算:    $$\bex    f\mbox{ 在 }x\mbox{ 连续}\ra \frac{\rd}{\rd x}\int_a^x…
本节中, 设 $f,g,f_i$ 是可测集 $E$ 上的非负可测函数, $A,B$ 是 $E$ 的可测子集.       1 定义: (1) $f$ 在 $E$ 上的 Lebesgue 积分        $$\bex        \int_E f(x)\rd x        =\sup\sed{\int_E\phi(x)\rd x; 0\leq \phi\leq f}.        \eex$$ (2) $f$ 在 $E$ 上 Lebesgue 可积 $\dps{\lra \int_Ef…
1定义 (1)$f$ 在 $E$ 上积分确定 $\lra$ $\dps{\int_Ef^+(x)\rd x<+\infty}$ 或 $\dps{\int_Ef^-(x)\rd x<+\infty}$; 此时称 $$\bex \int_E f(x)\rd x=\int_Ef^+(x)\rd x -\int_Ef^-(x)\rd x \eex$$ 为 $f$ 在 $E$ 上的 Lebesgue 积分. (2)$f$ 在 $E$ 上 Lebesgue 可积 $\lra$ $\dps{\int_Ef^…
1 记号: 一元函数 $f$ 在 $[a,b]$ 上的 (1)Riemann 积分: $\dps{(R)\int_a^b f(x)\rd x}$; (2)Lebesgue 积分: $\dps{(L)\int_{[a,b]}f(x)\rd x}$. 2回忆 (1)Riemann 积分: 对函数 $f:[a,b]\to \bbR$ 及 $[a,b]$ 的任一分划 $$\bex T:\ a=x_0<x_1<\cdots<x_n=b,\quad\sex{\mbox{细度 }\sen{T}=\ma…
1 本节推广数学分析中的 Fubini 定理. 为此, 先引入 (1)(从低到高) 对 $A\subset \bbR^p, B\subset\bbR^q$, $$\bex A\times B=\sed{(x,y);x\in A, y\in B} \eex$$ 称为 $A$ 与 $B$ 的直积 (direct product). (2)(从高到低) 设 $E\subset \bbR^{p+q}$, $x\in \bbR^p$, 则称 $$\bex E_x=\sed{y\in\bbR^q;(x,y)…
1 设        $$\bex        \phi(x)=\sum_{i=1}^j c_i\chi_{E_i}(x),\quad c_i\geq 0,        \eex$$ 其中        $$\bex        E_i\mbox{ 可测},\quad E_i\mbox{ 两两不交},\quad E=\cup_{i=1}^j E_i,        \eex$$ 则定义        $$\bex        \int_E \phi(x)\rd x=\sum_{i=1}^…
思路分析:题目已经明确透露了这道题的解法:就是画框.当 输入的边长  的话,就表示可以在内层继续嵌套一个方框.废话就不多说了,直接上代码吧! 代码如下: #include <iostream> #include <algorithm> using namespace std; int n; char ch[105][105]; int main() { while (cin >> n) { // 初始化 (切记 ,必须要初始化!!!) for (int i = 0; i…
家里蹲大学数学杂志[官方网站]从由赣南师范大学张祖锦老师于2010年创刊;每年一卷, 自己有空则出版, 没空则搁置, 所以一卷有多期.本杂志至2016年12月31日共7卷493期, 6055页.既然做了, 就必须对自己和各位同学负责, 本杂志利用Latex精心排版, 整齐美观; 利用所学所知, 证明简单明了, 思路清晰;利用软件验算, 解答过程清楚, 结果准确. 从2017年起本刊除非应邀给出试题解答, 极少更新, 而逐步向``跟锦数学’’和``数学分析高等代数考研试题参考解答’’转换. 本杂志…
1.老老实实把课本上的题目做完.其实说科大的课本难,我以为这话不完整.科大的教材,就数学系而言还是讲得挺清楚的,难的是后面的习题.事实上做1道难题的收获是做10道简单题所不能比的. 2.每门数学必修课至少要看一本参考书,尽量做一本习题集. 3.数学分析别做吉米,除非你太无聊,推荐北大方企勤的习题集.此外注意一下有套波兰的数学分析习题集,是不是搞得到中文或英文版. 4.线性代数推荐普罗斯库列科夫的<<线性代数习题集>>和法捷耶夫的<<高等代数习题集>>.莫斯科…
注意 请贡献者查看参与方式,然后直接在 ISSUE 中认领. 翻译/校对三个文档就可以申请当负责人,我们会把你拉进合伙人群.翻译/校对五个文档的贡献者,可以申请实习证明. 请私聊片刻(529815144).咸鱼(1034616238).或飞龙(562826179)来领取以上奖励. 翻译校对活动 可解释的机器学习[校对] 参与方式:https://github.com/apachecn/interpretable-ml-book-zh/blob/master/CONTRIBUTING.md 整体进…