1. 问题 比如说我们建了一个 topic,有三个 partition.生产者在写的时候,其实可以指定一个 key,比如说我们指定了某个订单 id 作为 key,那么这个订单相关的数据,一定会被分发到同一个 partition 中去,而且这个 partition 中的数据一定是有顺序的.消费者从 partition 中取出来数据的时候,也一定是有顺序的.到这里,顺序还是 ok 的,没有错乱.接着,我们在消费者里可能会搞多个线程来并发处理消息.因为如果消费者是单线程消费处理,而处理比较耗时的话,比…
1. 问题 比如说我们建了一个 topic,有三个 partition.生产者在写的时候,其实可以指定一个 key,比如说我们指定了某个订单 id 作为 key,那么这个订单相关的数据,一定会被分发到同一个 partition 中去,而且这个 partition 中的数据一定是有顺序的.消费者从 partition 中取出来数据的时候,也一定是有顺序的.到这里,顺序还是 ok 的,没有错乱.接着,我们在消费者里可能会搞多个线程来并发处理消息.因为如果消费者是单线程消费处理,而处理比较耗时的话,比…
首先需要思考下边几个问题: 消息丢失是什么造成的,从生产端和消费端两个角度来考虑 消息重复是什么造成的,从生产端和消费端两个角度来考虑 如何保证消息有序 如果保证消息不重不漏,损失的是什么 大概总结下 消费端重复消费:建立去重表 消费端丢失数据:关闭自动提交offset,处理完之后受到移位 生产端重复发送:这个不重要,消费端消费之前从去重表中判重就可以 生产端丢失数据:这个是最麻烦的情况 解决策略: 1.异步方式缓冲区满了,就阻塞在那,等着缓冲区可用,不能清空缓冲区 2.发送消息之后回调函数,发…
1.消费端弄丢了数据 唯一可能导致消费者弄丢数据的情况,就是说,你消费到了这个消息,然后消费者那边自动提交了 offset,让 Kafka 以为你已经消费好了这个消息,但其实你才刚准备处理这个消息,你还没处理,你自己就挂了,此时这条消息就丢咯. 这不是跟 RabbitMQ 差不多吗,大家都知道 Kafka 会自动提交 offset,那么只要关闭自动提交 offset,在处理完之后自己手动提交 offset,就可以保证数据不会丢.但是此时确实还是可能会有重复消费,比如你刚处理完,还没提交 offs…
1.kafka在高并发的情况下,如何避免消息丢失和消息重复? 消息丢失解决方案: 首先对kafka进行限速, 其次启用重试机制,重试间隔时间设置长一些,最后Kafka设置acks=all,即需要相应的所有处于ISR的分区都确认收到该消息后,才算发送成功 消息重复解决方案: 消息可以使用唯一id标识 生产者(ack=all 代表至少成功发送一次) 消费者 (offset手动提交,业务逻辑成功处理后,提交offset) 落表(主键或者唯一索引的方式,避免重复数据) 业务逻辑处理(选择唯一主键存储到R…
mq系列文章 对mq了解不是很多的,可以看一下下面两篇文章: 聊聊mq的使用场景 聊聊业务系统中投递消息到mq的几种方式 聊聊消息消费的几种方式 如何确保消息至少消费一次 如何保证消息消费的幂等性 本章内容 从消费者的角度出发,分析一下消息消费的两种方式: push方式 pull方式 push方式 消息消费的过程: mq接收到消息 mq主动将消息推送给消费者(消费者需提供一个消费接口) mq属于主动方,消费者属于一种被动消费,一旦有消息到达mq,会触发mq推送机制,将消息推送给消费者,不管消费者…
作者:可期链接:https://www.zhihu.com/question/266390197/answer/772404605来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 关于Kafka保证单partition有序的讨论如下: 一.为什么只保证单partition有序 如果Kafka要保证多个partition有序,不仅broker保存的数据要保持顺序,消费时也要按序消费.假设partition1堵了,为了有序,那partition2以及后续的分区也不能被消…
一.kafka自带的消费机制 kafka有个offset的概念,当每个消息被写进去后,都有一个offset,代表他的序号,然后consumer消费该数据之后,隔一段时间,会把自己消费过的消息的offset提交一下,代表我已经消费过了.下次我要是重启,就会继续从上次消费到的offset来继续消费. 但是当我们直接kill进程了,再重启.这会导致consumer有些消息处理了,但是没来得及提交offset.等重启之后,少数消息就会再次消费一次. 其他MQ也会有这种重复消费的问题,那么针对这种问题,我…
转自: http://www.infoq.com/cn/articles/high-availability-broker-design?utm_source=tuicool&utm_medium=referral 在要求严格顺序消息的场景下,消息的发送者,BROKER端(BROKER端和消息存储放在一起),消息的消费者都要求按照顺序进行,三者任何一个环节的乱序都会导致消息最终的消费顺序被打乱. 如果为每一个消息维护一个有序的ID,发送和存储消息无序,消费逻辑会变得非常复杂,消费端要对消息进行重…
1. 保证消息被消费 即使消息发送到了消息队列,消息也不会万无一失,还是会面临丢失的风险. 我们以 Kafka 为例,消息在Kafka 中是存储在本地磁盘上的, 为了减少消息存储对磁盘的随机 I/O,一般我们会将消息写入到操作系统的 Page Cache 中,然后在合适的时间将消息刷新到磁盘上. 例如,Kafka 可以配置当达到某一时间间隔,或者累积一定的消息数量的时候再刷盘,也就是所谓的异步刷盘. 不过,如果发生机器掉电或者机器异常重启,那么 Page Cache 中还没有来得及刷盘的消息就会…