WOE编码与IV值】的更多相关文章

一.变量分箱 变量分箱常见于逻辑回归评分卡的制作中,在入模前,需要对原始变量值通过分箱映射成woe值.举例来说,如"年龄"这一变量,我们需要找到合适的切分点,将连续的年龄打散到不同的"箱"中,并按年龄落入的"箱"对变量进行编码. 关于变量分箱的作用,相关资料中的解释有很多,我认为变量分箱最主要有三个作用: 归一化:分箱且woe编码映射后的变量,可以将变量归一到近似尺度上: 引入非线性:对于逻辑回归这类线性模型,引入变量分箱可以增强模型的拟合能力:…
更多大数据分析.建模等内容请关注公众号<bigdatamodeling> 在对变量分箱后,需要计算变量的重要性,IV是评估变量区分度或重要性的统计量之一,R语言计算IV值的代码如下: CalcIV <- function(df_bin, key_var, y_var){ N_0<-table(df_bin[, y_var])[1] N_1<-table(df_bin[, y_var])[2] iv_c<-NULL var_c<-NULL for (col in c…
更多大数据分析.建模等内容请关注公众号<bigdatamodeling> 在对变量分箱后,需要计算变量的重要性,IV是评估变量区分度或重要性的统计量之一,python计算IV值的代码如下: def CalcIV(Xvar, Yvar): N_0 = np.sum(Yvar==0) N_1 = np.sum(Yvar==1) N_0_group = np.zeros(np.unique(Xvar).shape) N_1_group = np.zeros(np.unique(Xvar).shape…
一.KVC 键-值编码(Key - Value Coding, KVC)是通过变量名的读取和设置变量值的一种方法,将字符串的变量名作为key来引用.NSObject定义了两个方法(KVC方法)用于变量值得读取和设置:setValue:forKey; valueForKey:forKey; @interface Student:NSObject{ NSString *firstName; } Student *s = [[Student alloc] init]; //设置变量值 [s setVa…
演示: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <script type="text/jav…
主要分为如下内容: 一.线性回归 二.逻辑回归 三.逻辑回归评分卡流程 一.线性回归 二.逻辑回归 在线性回归的基础上引入了sigmoid函数,Logistic回归为什么要使用sigmoid函数 三.逻辑回归评分卡流程 1.y值确定 2.变量分析(缺失值处理.离散值处理) 3.特征工程 4.数据预处理:无量纲化(标准化.区间缩放法.归一化).二值化.哑变量 5.分箱.woe转化.iv值 6.变量选择:Filter.Wrapper.Embedded http://blog.sina.com.cn/…
信用评分卡模型在国外是一种成熟的预测方法,尤其在信用风险评估以及金融风险控制领域更是得到了比较广泛的使用,其原理是将模型变量WOE编码方式离散化之后运用logistic回归模型进行的一种二分类变量的广义线性模型. 本文重点介绍模型变量WOE以及IV原理,为表述方便,本文将模型目标标量为1记为违约用户,对于目标变量为0记为正常用户: 则WOE(weight of Evidence 证据权重)其实就是自变量取某个值的时候对违约比例的一种影响, 怎么理解这句话呢?我下面通过一个图标来进行说明. Woe…
1.IV的用途 IV的全称是Information Value,中文意思是信息价值,或者信息量. 我们在用逻辑回归.决策树等模型方法构建分类模型时,经常需要对自变量进行筛选.比如我们有200个候选自变量,通常情况下,不会直接把200个变量直接放到模型中去进行拟合训练,而是会用一些方法,从这200个自变量中挑选一些出来,放进模型,形成入模变量列表.那么我们怎么去挑选入模变量呢? 挑选入模变量过程是个比较复杂的过程,需要考虑的因素很多,比如:变量的预测能力,变量之间的相关性,变量的简单性(容易生成和…
转载:https://zhuanlan.zhihu.com/p/38440477 转载:https://blog.csdn.net/starzhou/article/details/78930490 转载:https://www.cnblogs.com/wzdLY/p/9649101.html 1.离散的优势: (1)离散化后的特征对异常数据有很强的鲁棒性:比如一个特征是年龄>30是1,否则0.如果特征没有离散化,一个异常数据“年龄300岁”会给模型造成很大的干扰: (2)逻辑回归属于广义线性模…
woe全称是"Weight of Evidence",即证据权重,是对原始自变量的一种编码形式. 进行WOE编码前,需要先把这个变量进行分组处理(离散化) 其中,pyi是这个组中响应客户(即模型中预测变量取值为"是"或1的个体,也叫坏样本)占所有样本中所有响应客户的比例,pni是这个组中未响应客户(也叫好样本)占样本中所有未响应客户的比例: #yi是这个组中响应客户的数量,#ni是这个组中未响应客户的数量,#yT是样本中所有响应客户的数量,#nT是样本中所有未响应客…