首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
mapreduce计算框架
】的更多相关文章
(第4篇)hadoop之魂--mapreduce计算框架,让收集的数据产生价值
摘要: 通过前面的学习,大家已经了解了HDFS文件系统.有了数据,下一步就要分析计算这些数据,产生价值.接下来我们介绍Mapreduce计算框架,学习数据是怎样被利用的. 博主福利 给大家赠送一套hadoop视频课程 授课老师是百度 hadoop 核心架构师 内容包括hadoop入门.hadoop生态架构以及大型hadoop商业实战案例. 讲的很细致, MapReduce 就讲了 15 个小时. 学完后可以胜任 hadoop 的开发工作,很多人学的这个课程找到的工作. (包括指导书.练习代码.和…
Big Data(七)MapReduce计算框架
二.计算向数据移动如何实现? Hadoop1.x(已经淘汰): hdfs暴露数据的位置 1)资源管理 2)任务调度 角色:JobTracker&TaskTracker JobTracker: 资源管理.任务调度(主) TaskTracker:任务管理.资源汇报(从) Client: 1.会根据每次计算数据,咨询NN的元数据(block).算:split 得到一个切片的清单 map的数量就有了 2.split是逻辑的,block是物理的,block身上有(offset,locatios),spli…
MR 01 - MapReduce 计算框架入门
目录 1 - 什么是 MapReduce 2 - MapReduce 的设计思想 2.1 如何海量数据:分而治之 2.2 方便开发使用:隐藏系统层细节 2.3 构建抽象模型:Map 和 Reduce 3 - MapReduce 的优劣 3.1 MapReduce 的优势 3.2 MapReduce 的限制 参考资料 版权声明 1 - 什么是 MapReduce 维基百科中,MapReduce 是 Google 提出的一个软件架构,用于大规模数据集(大于1TB)的并行运算. MapReduce 是…
Big Data(七)MapReduce计算框架(PPT截图)
一.为什么叫MapReduce? Map是以一条记录为单位映射 Reduce是分组计算…
MapReduce计算框架的核心编程思想
@ 目录 概念 MapReduce中常用的组件 概念 Job(作业) : 一个MapReduce程序称为一个Job. MRAppMaster(MR任务的主节点): 一个Job在运行时,会先启动一个进程,这个进程称为MRAppMaster,负责Job中执行状态的监控,容错,和RM申请资源,提交Task等. Task(任务): Task是一个进程,负责某项计算. Map(Map阶段):Map是MapReduce程序运行的第一个阶段,Map阶段的目的是将输入的数据,进行切分.将一个大文件,切分为若干小…
mapreduce计算框架
一. MapReduce执行过程 分片: (1)对输入文件进行逻辑分片,划分split(split大小等于hdfs的block大小) (2)每个split分片文件会发往不同的Mapper节点进行分散处理 mapper任务 (3)每个Mapper节点拿到split分片后,创建RecordReader,把分片数据解析成键值对<k1,v1>,每对<k1,v1>进行一次map操作形成<k2,v2>,此时的<k2,v2>存储在内存的环形缓冲区内(默认100m),当缓冲…
Hadoop中MapReduce计算框架以及HDFS可以干点啥
我准备学习用hadoop来实现下面的过程: 词频统计 存储海量的视频数据 倒排索引 数据去重 数据排序 聚类分析 ============= 先写这么多…
开源图计算框架GraphLab介绍
GraphLab介绍 GraphLab 是由CMU(卡内基梅隆大学)的Select 实验室在2010 年提出的一个基于图像处理模型的开源图计算框架.框架使用C++语言开发实现. 该框架是面向机器学习(ML)的流处理并行计算框架,可以运行在多处理机的单机系统.集群或是亚马逊的EC2 等多种环境下.框架的设计目标是,像MapReduce一样高度抽象.可以高效运行与机器学习相关的.具有稀疏的计算依赖特性的迭代性算法,并且保证计算过程中数据的高度一致性和高效的并行计算性能.该框架最初是为处理大规模机器学…
从计算框架MapReduce看Hadoop1.0和2.0的区别
一.1.0版本 主要由两部分组成:编程模型和运行时环境. 编程模型为用户提供易用的编程接口,用户只需编写串行程序实现函数来实现一个分布式程序,其他如节点间的通信.节点失效,数据切分等,则由运行时环境完成. 基本编程模型将问题抽象成Map和Reduce两个阶段,Map阶段将输入数据解析成key/value,迭代调用map()函数后,再以key/value的形式输出到本地目录:Reduce阶段则将key相同的value进行归约处理,并将最终结果写入到HDFS. 运行时环境由JobTracker和Ta…
Spark Streaming实时计算框架介绍
随着大数据的发展,人们对大数据的处理要求也越来越高,原有的批处理框架MapReduce适合离线计算,却无法满足实时性要求较高的业务,如实时推荐.用户行为分析等. Spark Streaming是建立在Spark上的实时计算框架,通过它提供的丰富的API.基于内存的高速执行引擎,用户可以结合流式.批处理和交互试查询应用.本文将详细介绍Spark Streaming实时计算框架的原理与特点.适用场景. Spark Streaming实时计算框架 Spark是一个类似于MapReduce的分布式计算框…