uva 11417 - GCD】的更多相关文章

GCDInput: Standard Input Output: Standard Output Given the value of N, you will have to find the value of G. The definition of G is given below:   Here GCD(i,j) means the greatest common divisor of integer i and integer j. For those who have trouble…
UVA 11426 - GCD - Extreme (II) 题目链接 题意:给定N.求∑i<=ni=1∑j<nj=1gcd(i,j)的值. 思路:lrj白书上的例题,设f(n) = gcd(1, n) + gcd(2, n) + ... + gcd(n - 1, n).这种话,就能够得到递推式S(n) = f(2) + f(3) + ... + f(n) ==> S(n) = S(n - 1) + f(n);. 这样问题变成怎样求f(n).设g(n, i),表示满足gcd(x, n)…
UVA.12716 GCD XOR (暴力枚举 数论GCD) 题意分析 题意比较简单,求[1,n]范围内的整数队a,b(a<=b)的个数,使得 gcd(a,b) = a XOR b. 前置技能 XOR的性质 GCD 由于题目只给出一个n,我们要求对数,能做的也始终暴力枚举a,b,这样就有n^2的复杂度,由于n很大,根本过不了. 于是我们就想用到其中一些性质,如XOR 与GCD,不妨假设 a xor b = c,并且根据题意还知道, gcd(a,b) = c,也就说明c一定是a的因子,所以在枚举的…
题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n) 此题和UVA 11426 一样,不过n的范围只有20000,但是最多有20000组数据. 当初我直接照搬UVA11426,结果超时,因为没有预处理所有的结果(那题n最多4000005,但最多只有100组数据),该题数据太多了额... 思路:令sum(n)=gcd(1,n)+gcd(2,n)+...+g…
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4454 题意: 输入整数n(1≤n≤30000000),有多少对整数(a,b)满足:1≤b≤a≤n,且gcd(a,b)=a xor b.例如n=7时,有4对:(3,2), (5,4), (6,4), (7,6). 分析: 若a xor b = c,则a xor c = b,所以可以枚…
参考:http://www.cnblogs.com/naturepengchen/articles/3952145.html #include<stdio.h> #include<string.h> #include<time.h> ; int ans[N]; int gcd(int a,int b){ if(!b) return a; return gcd(b,a%b); } void init(){ ;c<=N/;c++){ for(int a=c+c;a&l…
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2421 代码及其注释: #include <iostream> #include <cstdio> #include <string> #include <cstring> #include <cmath> #include <…
我一直相信这道题有十分巧妙的解法的,去搜了好多题解发现有的太过玄妙不能领会. 最简单的就是枚举n的所有约数,然后二重循环找lcm(a, b) = n的个数 #include <cstdio> #include <vector> #include <algorithm> using namespace std; ? a : gcd(b, a % b); } int lcm(int a, int b) { return a / gcd(a, b) * b; } int ma…
好吧,被大白书上的入门题给卡了.=_=|| 已知LCM(A, B) = C,已知A和C,求最小的B 一开始我想当然地以为B = C / A,后来发现这时候的B不一定满足gcd(A, B) = 1 A要不断地除去gcd(A, B),直到满足gcd(A, B) = 1 B最后就应该乘上A除去的值 #include <cstdio> typedef long long LL; LL gcd(LL a, LL b) { ? a : gcd(b, a%b); } int main() { int T;…
题意: 问整数n以内,有多少对整数a.b满足(1≤b≤a)且gcd(a, b) = xor(a, b) 分析: gcd和xor看起来风马牛不相及的运算,居然有一个比较"神奇"的结论: 设gcd(a, b) = xor(a, b) = c, 则 c = a - b 这里 有比较严格的证明. 有了这个结论后,我们可以枚举约数c,然后枚举c的倍数a,再根据c = a - b计算b,检验b是否满足gcd(a, b) = xor(a, b) #include <cstdio> ; ]…