正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd(i,j)==d]$ 后面那个就莫比乌斯反演入门题辣$QwQ$? 就变成$\sum_{p=1}^{n}[p\mbox{为质数}]\sum_{d=1}^{n/p}\mu(d)\lfloor \frac {n/p}{d}\rfloor^2$ 十分套路的,后面显然可以数论分块,就变成了$\sum_{p=1…
[BZOJ2226][Spoj 5971] LCMSum Description Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n,n), where LCM(i,n) denotes the Least Common Multiple of the integers i and n. Input The first line contains T the number of test cases. Each of the n…
题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算​$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==prime]​$ 题解: 解法一:莫比乌斯反演套路题 其实这样就可以了,但是还可以优化一下子 设​​T=dp ​ 整除分块就好了,其实这就和 yy的gcd 一样了 解法二:欧拉函数 考虑上面的第一个式子​可以化简成 ​ tot是n以内质数的数量 这是因为考虑到每次都两次计算了​$\varphi(1)$…
link 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 1<=N<=10^7 (1)莫比乌斯反演法 发现就是YY的GCD,左转YY的GCD粘过来就行 代码太丑,没开O2 TLE5个点 #include <cstdio> #include <functional> using namespace std; const int fuck = 10000000; int prime[10000010], tot; bool v…
https://www.luogu.org/problemnew/show/P1390 求 $\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} gcd(i,j) $ 不会,看题解: 类似求gcd为p的求法: $ f(n) = \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} gcd(i,j) =\sum\limits_{i=1}^{N} d \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}…
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵. 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0). 能量汇集机器在汇集的过…
题意: 给定\(n,m,p\),求 \[\sum_{a=1}^n\sum_{b=1}^m\frac{\varphi(ab)}{\varphi(a)\varphi(b)}\mod p \] 思路: 由欧拉函数性质可得:\(x,y\)互质则\(\varphi(xy)=\varphi(x)\varphi(y)\):\(p\)是质数则\(\varphi(p^a)=(p-1)^{a-1}\).因此,由上述两条性质,我们可以吧\(a,b\)质因数分解得到 \[\begin{aligned} \sum_{a=…
Code: #pragma GCC optimize(2) #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) #define maxn 1000006 #define M 1000004 #define ll long long using namespace std; char *p1,*p2,buf[100000]; #define nc() (p1==p2&…
题目链接 \(Description\) 求\[\sum_{i=1}^n\gcd(i,n)\] \(Solution\) \[ \begin{aligned} \sum_{i=1}^n\gcd(i,n) &=\sum_{d=1}^nd\sum_{i=1}^n[\gcd(i,n)=d]\\ &=\sum_{d=1}^nd\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}[\gcd(i,\lfloor\frac{n}{d}\rfloor)=1] \end{aligne…
一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc)还是比较好算的,讨论一波即可. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorith…