MongoDB整理笔记のSharding分片】的更多相关文章

这是一种将海量的数据水平扩展的数据库集群系统,数据分表存储在sharding 的各个节点上,使用者通过简单的配置就可以很方便地构建一个分布式MongoDB 集群.MongoDB 的数据分块称为 chunk.每个 chunk 都是 Collection 中一段连续的数据记录,通常最大尺寸是 200MB,超出则生成新的数据块.要构建一个 MongoDB Sharding Cluster,需要三种角色:    Shard Server    即存储实际数据的分片,每个Shard 可以是一个mongod…
MongoDB Auto-Sharding 解决了海量存储和动态扩容的问题,但离实际生产环境所需的高可靠.高可用还有些距离,所以有了"Replica Sets + Sharding"的解决方案. shard: 使用Replica Sets,确保每个数据节点都具有备份,自动容错转移,自动回复能力. config: 使用3个配置服务器,确保元数据的完整性. route: 使用3个路由进程,实现负载均衡,提高客户端接入性能. 配置Replica Sets + Sharding 架构图: 配置…
1.列出所有的Shard Server > db.runCommand({ listshards: 1 }) --列出所有的Shard Server { "shards" : [ { "_id" : "shard0000", "host" : "localhost:20000" }, { "_id" : "shard0001", "host"…
1.启动一个新Shard Server 进程 [root@localhost ~]# mkdir /data/shard/s2 [root@localhost ~]# /Apps/mongo/bin/mongod --shardsvr --port 20002 --dbpath /data/shard/s2 --fork --logpath /data/shard/log/s2.log --directoryperdb all output going to: /data/shard/log/s…
 分片和副本集混合运用: 基本架构图: 搭建详细配置: 3个shard + 3个replicat set + 3个configserver + 3个Mongos shardrsname Primary Secondary Secondary port bigdata-sh-a bigdata-sh-a1 bigdata-sh-a2 bigdata-sh-a3 28111 bigdata-sh-b bigdata-sh-b2 bigdata-sh-b1 bigdata-sh-b3 28112 bi…
MongDB的MapReduce相当于MySQL中的“group by”,所以在MongoDB上使用Map/Reduce进行并行“统计”很容易. 使用MapReduce要实现两个函数Map函数和Reduce函数,Map函数调用emit(key,value),遍历collection中的所有记录,将key和value传递给Reduce函数进行处理.Map函数和Reduce函数可以使用JS来实现,可以通过db.runCommand或mapReduce命令来执行一个MapReduce操作. 示例she…
1.简单介绍 capped collections 是性能出色的有着固定大小的集合,以LRU(Least Recently Used 最近最少使用)规则和插入顺序进行age-out(老化移出)处理,自动维护集合中对象的插入顺序,在创建时要预先指定大小.如果空间用完,新添加的对象将会取代集合中最旧的对象. 2.功能特点 可以插入及更新,但更新不能超出collection 的大小,否则更新失败.不允许删除,但是可以调用drop() 删除集合中的所有行,但是drop 后需要显式地重建集合.在32 位机…
本人学习mongodb时间不长,但是鉴于工作的需要以及未来发展的趋势,本人想更深层的认识mongodb底层的原理以及更灵活的应用mongodb,边学边工作实践.  mongodb属于nosql中算是最热门的数据库,所以我们不妨对nosql有一个最基本的了解:  NoSQL,全称是”Not Only Sql”,指的是非关系型的数据库.NoSQL 被我们用得最多的当数key-value 存储,当然还有其他的文档型的.列存储.图型数据库.xml 数据库等.与关系型数据库相比,关系型数据库给你强加了太多…
最近项目在做网站用户数据新访客统计,数据存储在MongoDB中,统计的数据其实也并不是很大,1000W上下,但是公司只配给我4G内存的电脑,让我程序跑起来气喘吁吁...很是疲惫不堪. 最常见的问题莫过于查询MongoDB内存溢出,没办法只能分页查询.这种思想大家可能都会想到,但是如何分页,确实多有门道! 网上用的最多的,也是最常见的分页采用的是skip+limit这种组合方式,这种方式对付小数据倒也可以,但是对付上几百上千万的大数据,却只能望而兴叹... 经过网上各种查找资料,寻师问道的,发现了…
以下是官网原文地址: http://docs.mongodb.org/manual/tutorial/create-an-auto-incrementing-field/ 概要 MongoDB 的_id字段作为一个主键存在于所有文档的最顶层,_id必须是唯一的,而且总是具有唯一约束的索引.除了唯一约束,你可以在集合中的_id字段上使用任何值, 以下这个指南描述了在_id上创建一个自增序列的两种方式:    Use Counter Collection     Optimistic Loop 注意…