「BZOJ 2142」礼物】的更多相关文章

题目链接 戳这 Title Solution 这一道题显然可以看出公式为: \[ans=C_{n}^{w_1}*C_{n-w}^{w_2}*...*C_{w_m}^{w_m}\] 然后就可以用扩展Lucas求解了. 至于扩展Lucas:戳这 code #include<bits/stdc++.h> #define rg register #define int long long #define file(x) freopen(x".in","r",st…
loj#2020 「AHOI / HNOI2017」礼物 链接 bzoj没\(letex\),差评 loj luogu 思路 最小化\(\sum\limits_1^n(a_i-b_i)^2\) 设改变量为k \(\sum\limits_1^n(a_i-(b_i+k))^2\) \(\sum\limits_1^n(a_i^2-2*a_i*(b_i+k)+(b_i+k)^2)\) \(\sum\limits_1^n(a_i^2-2*a_i*b_i-2*a_i*k+b_i^2+2*b_i*k+k^2)…
「BZOJ 4228」Tibbar的后花园 Please contact lydsy2012@163.com! 警告 解题思路 可以证明最终的图中所有点的度数都 \(< 3\) ,且不存在环长是 \(3\) 的倍数的环.这是充分必要的,由于图不联通,其就是由若干个联通块组成的,每个联通块是一条链或者环长不是 \(3\) 的倍数的环,然后强上EGF就好了. 列出链的EGF和环的EGF \[ A(x)=x+\sum_{i\geq2}\dfrac{x^i}{2} \\ B(x)=\sum_{i>3,…
「BZOJ 3645」小朋友与二叉树 解题思路 令 \(G(x)\) 为关于可选大小集合的生成函数,即 \[ G(x)=\sum[i\in c ] x^i \] 令 \(F(x)\) 第 \(n\) 项的系数为为权值为 \(n\) 的二叉树的方案数,显然有 \[ F(x)=F(x)^2G(x)+1\\ F^2(x)G(x)-F(x)+1=0 \\ F(x)=\dfrac{1\pm\sqrt{1-4G(x)}}{2G(x)} \] 当 \(x\to 0\) 时,\(F(x)\) 的值为 \(1\)…
「BZOJ 4502」串 题目描述 兔子们在玩字符串的游戏.首先,它们拿出了一个字符串集合 \(S\),然后它们定义一个字符串为"好"的,当且仅当它可以被分成非空的两段,其中每一段都是字符串集合 \(S\) 中某个字符串的前缀.比如对于字符串集合 \(\{ "abc","bca" \}\),字符串 \("abb"\),\("abab"\)是"好"的 \(("abb"=…
「BZOJ 4289」 PA2012 Tax 题目描述 给出一个 \(N\) 个点 \(M\) 条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点 \(1\) 到点 \(N\) 的最小代价.起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边权 \(N \leq 10^5, M \leq 2 \times 10^5\) 解题思路 : 首先考虑一个暴力的做法,建一个新图,把每一条边看成新图的一个点' 对于原图的每一个点 \(u\) 对于边 \((u, x),…
「BZOJ 2534」 L - gap字符串 题目描述 有一种形如 \(uv u\) 形式的字符串,其中 \(u\) 是非空字符串,且 \(v\) 的长度正好为 \(L\), 那么称这个字符串为 \(L-Gap\) 字符串 给出一个字符串 \(S\), 以及一个正整数 \(L\), 问 \(S\) 中有多少个 \(L-Gap\) 子串. \(1 \leq |S| \leq 5 \times 10^4, L \leq 10\) 解题思路 : 考虑要对特征串计数,不妨枚举 单个 \(u\) 的长度…
「AHOI / HNOI2017」礼物 题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度. 但是在她生日的前一天,我的室友突然发现他好像拿错了一个手环,而且已经没时间去更换它了!他只能使用一种特殊的方法,将其中一个手环中所有装饰物的亮度增加一个相同的自然数 c(即非负整数).并且由于这个手环是一个圆,可以以任意的角度旋转它,但是由于上面装饰物的方向是固定的,所以手环不能…
「BZOJ 2956」模积和 令 \(l=\min(n,m)\).这个 \(i\neq j\) 非常不优雅,所以我们考虑分开计算,即: \[\begin{aligned} &\sum_{i=1}^{n}\sum_{j=1,i\neq j}^{m}(n \bmod i)(m\bmod j)\\ =&\sum_{i=1}^{n}\sum_{j=1}^{m}(n \bmod i)(m\bmod j)-\sum_{i=1}^{\texttt{l}}(n \bmod i)(m\bmod i)\\ \…
\(\mathcal{Description}\)   Link.   给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\) 的数量,使得 \(H\) 是强连通图.答案模 \((10^9+7)\).   \(n\le15\). \(\mathcal{Solution}\)   仙气十足的状压容斥.   令 \(f(S)\) 表示仅考虑点集 \(S\) 的导出子图时,使得 \(S\) 强连通的选边方案数,那么 \(f(V…