MapReduce TopK统计加排序】的更多相关文章

Hadoop技术内幕中指出Top K算法有两步,一是统计词频,二是找出词频最高的前K个词.在网上找了很多MapReduce的Top K案例,这些案例都只有排序功能,所以自己写了个案例. 这个案例分两个步骤,第一个是就是wordCount案例,二就是排序功能. 一,统计词频 package TopK; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configu…
接上篇https://www.cnblogs.com/sengzhao666/p/11850849.html 2.数据处理: ·统计最受欢迎的视频/文章的Top10访问次数 (id) ·按照地市统计最受欢迎的Top10课程 (ip) ·按照流量统计最受欢迎的Top10课程 (traffic) 分两步: 统计:排序 初始文件部分样例: 1.192.25.84 2016-11-10-00:01:14 10 54 video 5551 1.194.144.222 2016-11-10-00:01:20…
MapReduce 单词统计案例编程 一.在Linux环境安装Eclipse软件 1.   解压tar包 下载安装包eclipse-jee-kepler-SR1-linux-gtk-x86_64.tar.gz到/opt/software目录下. 解压到/opt/tools目录下: [hadoop@bigdata-senior01 tools]$ tar -zxf /opt/sofeware/eclipse-jee-kepler-SR1-linux-gtk-x86_64.tar.gz -C /op…
昨天,与外部化系统对接时,发现有一个数据一直咩有集成到,双方各自排查了自己系统的代码,都觉得逻辑非常简单,无法就是一个分页查询而已. 问题就出在这个分页查询上. 为了说明当时问题发生的情景,我模拟了一个SQL查询: 以上是一段典型的Oracle数据库的分页查询,又以查询结果集的第1条至第800条数据. 如果想查询第二页的数据,只需要改到RN和ROWNUM即可.以下是查第二页的数据的SQL: 问题背景 上述SQL中从MY_TABLE查询结果集本身是没有问题的,因为符合条件的数据总数是不会变的.但是…
DataTable列查询加排序 DataRow[] drArray = dt.Select("ANLYCOM_ID='" + chSPrdtStblAnly.AnlyComId + "'", "SAMPLE_DATE");…
[Cloud Computing]Hadoop环境安装.基本命令及MapReduce字数统计程序 1.虚拟机准备 1.1 模板机器配置 1.1.1 主机配置 IP地址:在学校校园网Wifi下连接下 VMWare自己DHCP分配的是 192.168.190.xxx 内存:4G(根据自己机器确定 我需要三台机器 我的内存是16G) 硬盘:50G OS:CentOS7 x64 1.1.2 环境工具安装 ping www.baidu.com先查看能否正常上网 yum install -y epel-re…
需要在mysql中解决记录的分组统计.排序,并抽取前10条记录的功能.现已解决,解决方案如下: 1)表结构 CREATE TABLE `policy_keywords_rel` ( `id` int(11) NOT NULL AUTO_INCREMENT COMMENT '自增ID', `content_id` int(11) NOT NULL COMMENT '文章id', `keyword_id` int(11) NOT NULL COMMENT '关键词id', `cnt` int(11)…
一.MR排序的分类 1.部分排序:MR会根据自己输出记录的KV对数据进行排序,保证输出到每一个文件内存都是经过排序的: 2.全局排序: 3.辅助排序:再第一次排序后经过分区再排序一次: 4.二次排序:经过一次排序后又根据业务逻辑再次进行排序. 二.MR排序的接口——WritableComparable 该接口继承了Hadoop的Writable接口和Java的Comparable接口,实现该接口要重写write.readFields.compareTo三个方法. 三.流量统计案例的排序与分区 /…
诸多大互联网公司的面试都会有这么个问题,有个4G的文件,如何用只有1G内存的机器去计算文件中出现次数最多的数字(假设1行是1个数组,例如QQ号 码).如果这个文件只有4B或者几十兆,那么最简单的办法就是直接读取这个文件后进行分析统计.但是这个是4G的文件,当然也可能是几十G甚至几百G的文 件,这就不是直接读取能解决了的. 同样对于如此大的文件,单纯用PHP做是肯定行不通的,我的思路是不管多大文件,首先要切割为多个应用可以承受的小文件,然后批量或者依次分析统计小文件后再把总的结果汇总后统计出符合要…
1. 设计思路 在MapReduce过程中自带有排序,可以使用这个默认的排序达到我们的目的. MapReduce 是按照key值进行排序的,我们在Map过程中将读入的数据转化成IntWritable类型,然后作为Map的key值输出. Reduce 阶段拿到的就是按照key值排序好的<key,value list>,将key值输出,并根据value list 中元素的个数决定key的输出次数. 2. 实现 2.1 程序代码 package sort; import java.io.IOExce…