51nod 1257 背包问题 V3】的更多相关文章

1257 背包问题 V3 基准时间限制:3 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 N个物品的体积为W1,W2......Wn(Wi为整数),与之相对应的价值为P1,P2......Pn(Pi为整数),从中选出K件物品(K <= N),使得单位体积的价值最大. Input 第1行:包括2个数N, K(1 <= K <= N <= 50000) 第2 - N + 1行:每行2个数Wi, Pi(1 <= Wi, Pi <= 50000) Outpu…
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1257 题解:不能按照单位价值贪心,不然连样例都过不了 要求的r=sum(x[i]*p[i])/sum(x[i]*w[i])不妨设一个辅助函数 z(l)=sum(x[i]*p[i])-l*sum(x[i]*w[i]), 如果z(l) > 0 即sum(x[i]*p[i])-l*sum(x[i]*w[i])>0-->sum(x[i]*p[i])/sum(…
显然是分数规划...主要是不会求分数的形式,看了题解发现自己好傻逼QAQ 还是二分L值算出d[]降序选K个,顺便记录选择时候的p之和与w之和就可以输出分数形式了... #include<iostream> #include<cstdlib> #include<cstring> #include<cstdio> #include<algorithm> #include<queue> #include<cmath> #incl…
1257 背包问题 V3 3 秒 131,072 KB 80 分 5 级题 题意 : 从n个物品中选出k个,使单位体积价值最大 思路: 一开始正面想,试过很多种,排序什么的..总是结果不对,最后想到二分答案 二分的规则是使index的前接近0即可 ps:blocks[i].w物体的价值 block[i].p物体的体积 p二分答案 假设p是我们要的答案,那么block[i].p*p为block[i]应该占有的价值 blocks[i].w - block[i].p * p 为现在与目标价值的差 这个…
N个物品的体积为W1,W2......Wn(Wi为整数),与之相对应的价值为P1,P2......Pn(Pi为整数),从中选出K件物品(K <= N),使得单位体积的价值最大. Input 第1行:包括2个数N, K(1 <= K <= N <= 50000) 第2 - N + 1行:每行2个数Wi, Pi(1 <= Wi, Pi <= 50000) Output 输出单位体积的价值(用约分后的分数表示). Input示例 3 2 2 2 5 3 2 1 Output示…
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1257 1257 背包问题 V3 基准时间限制:3 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 N个物品的体积为W1,W2......Wn(Wi为整数),与之相对应的价值为P1,P2......Pn(Pi为整数),从中选出K件物品(K <= N),使得单位体积的价值最大. Input 第1行:包括2个数N, K(1 <= K <=…
分数规划经典.开始精度1e-3/1e-4都不行,1e-5就A了 #include<cstdio> #include<cstring> #include<cctype> #include<algorithm> using namespace std; #define rep(i,s,t) for(int i=s;i<=t;i++) #define dwn(i,s,t) for(int i=s;i>=t;i--) #define clr(x,c) m…
V3其实和dp关系不大,思想挂标题上了,丑陋的代码不想放了.…
这题公式真tm难推……为了这题费了我一个草稿本…… woc……在51Nod上码LaTeX码了两个多小时…… 一开始码完了前半段,刚码完后半段突然被51Nod吃了,重新码完后半段之后前半段又被吃了,吓得我赶紧换Notepad++接着写…… 有的细节懒得再码了,这么一坨LaTeX估计也够你们看了…… \begin{equation}ans=\sum_{i=1}^n\sum_{j=1}^n [i,j]\\=2\sum_{i=1}^n\sum_{j=1}^i [i,j]-\frac{n(n+1)}2\\…
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1086 思路  裸的多重背包 巩固一下刚学的骚操作 #include<bits/stdc++.h> using namespace std; ; int w[maxn],p[maxn],c[maxn];//分别表示 体积 价值和数量 ]; int main () { int n,W; cin >> n >> W; ;i<=n;i++) ci…
多重背包问题 一个背包,承量有限为W,有n种物体,第i种物体,价值Vi,占用重量为 Wi,且有Ci件,选择物品若干放入背包,使得总重量不超过背包的承重.总价值最大? 输入 第1行,2个整数,N和W中间用空格隔开.N为物品的种类,W为背包的容量.(1 <= N <= 100,1 <= W <= 50000) 第2 - N + 1行,每行3个整数,Wi,Pi和Ci分别是物品体积.价值和数量.(1 <= Wi, Pi <= 10000, 1 <= Ci <= 20…
1086 背包问题 V2  基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 有N种物品,每种物品的数量为C1,C2......Cn.从中任选若干件放在容量为W的背包里,每种物品的体积为W1,W2......Wn(Wi为整数),与之相对应的价值为P1,P2......Pn(Pi为整数).求背包能够容纳的最大价值.   Input 第1行,2个整数,N和W中间用空格隔开.N为物品的种类,W为背包的容量.(1 <= N <= 100,1 <=…
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1086 题解:怎么用二进制优化多重背包,举一个例子就明白了. 如果要放n个苹果,可以将n个苹果分成几个2的次方1,2,3,4,m^2然后n可以由这些按照某种组合来组合. 于是就知道怎么优化了. #include <iostream> #include <cstring> #include <cstdio> using namespac…
1086 背包问题 V2 1 秒 131,072 KB 20 分 3 级题 题目描述 有N种物品,每种物品的数量为C1,C2......Cn.从中任选若干件放在容量为W的背包里,每种物品的体积为W1,W2......Wn(Wi为整数),与之相对应的价值为P1,P2......Pn(Pi为整数).求背包能够容纳的最大价值.   输入 第1行,2个整数,N和W中间用空格隔开.N为物品的种类,W为背包的容量.(1 <= N <= 100,1 <= W <= 50000) 第2 - N +…
在N件物品取出若干件放在容量为W的背包里,每件物品的体积为W1,W2……Wn(Wi为整数),与之相对应的价值为P1,P2……Pn(Pi为整数).求背包能够容纳的最大价值. 收起   输入 第1行,2个整数,N和W中间用空格隔开.N为物品的数量,W为背包的容量.(1 <= N <= 100,1 <= W <= 10000) 第2 - N + 1行,每行2个整数,Wi和Pi,分别是物品的体积和物品的价值.(1 <= Wi, Pi <= 10000) 输出 输出可以容纳的最大…
在N件物品取出若干件放在容量为W的背包里,每件物品的体积为W1,W2……Wn(Wi为整数),与之相对应的价值为P1,P2……Pn(Pi为整数).求背包能够容纳的最大价值. 收起   输入 第1行,2个整数,N和W中间用空格隔开.N为物品的数量,W为背包的容量.(1 <= N <= 100,1 <= W <= 10000) 第2 - N + 1行,每行2个整数,Wi和Pi,分别是物品的体积和物品的价值.(1 <= Wi, Pi <= 10000) 输出 输出可以容纳的最大…
在N件物品取出若干件放在容量为W的背包里,每件物品的体积为W1,W2……Wn(Wi为整数),与之相对应的价值为P1,P2……Pn(Pi为整数).求背包能够容纳的最大价值. Input 第1行,2个整数,N和W中间用空格隔开.N为物品的数量,W为背包的容量.(1 <= N <= 100,1 <= W <= 10000) 第2 - N + 1行,每行2个整数,Wi和Pi,分别是物品的体积和物品的价值.(1 <= Wi, Pi <= 10000) Output 输出可以容纳的…
有N种物品,每种物品的数量为C1,C2......Cn.从中任选若干件放在容量为W的背包里,每种物品的体积为W1,W2......Wn(Wi为整数),与之相对应的价值为P1,P2......Pn(Pi为整数).求背包能够容纳的最大价值. 我们可以转化成01背包来做,但是这样很慢. 所以我们可以二进制优化. 一个数a,我们可以按照二进制来分解为1 + 2 + 4 + 8 -- +2^n + 剩下的数 = a 剩下的数等于a - (1 + 2 + 4 + 8 -- +2^n ) 我们把a拆成这么多项…
51nod 1134 最长递增子序列 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #define rep(i,l,r) for (int i=l; i<=r; i++) typedef long long ll; using namespace std; ; int n, s[N]; int dp[N]; int main(){ freopen(&q…
51nod 1238 最小公倍数之和 V3 求 \[ \sum_{i=1}^N\sum_{j=1}^N lcm(i,j) \] \(N\leq 10^{10}\) 先按照套路推一波反演的式子: \[ Ans=\sum_{g=1}g\sum_{i=1}^{\frac{n}{g}}\sum_{j=1}^{\frac{n}{g}}ij\sum_{d|i,d|j}\mu(d)\\ =\sum_{g=1}g\sum_{d=1}^{\frac{n}{g}}d^2\mu(d)S^2(\frac{n}{dg})…
前言 \(HE\)沾\(BJ\)的光成功滚回家里了...这堆最大子段和的题抠了半天,然而各位\(dalao\)们都已经去做概率了...先%为敬. 引流之主:老姚的博客 最大M子段和 V1 思路 最简单的ver.数据范围在5000以内,可以考虑暴力一点的做法\(O(n^3)\),定义\(dp\)状态\(dp[i][j]\),递推式子: \[dp[i][j]=max\{dp[i-1][j],dp[k][j-1]\}+a[i]\ (j-1\le k<i) \] 其中\(i\)表示序列中前\(i\)个元…
先说说前面的SPOJ-RNG吧,题意就是给n个数,x1,x2,...,xn 每次可以生成[-x1,x1]范围的浮点数,把n次这种操作生成的数之和加起来,为s,求s在[A,B]内的概率 连续形的概率 假设有3步,那整个分布范围相当于一个立体几何图形,上界b和下界a可当成一个x+y+z=a或b的平面看待,算出x<=X1 x>=-X1 y<=X2 y>=-X2 z<=X3 z>=-X3 发现体积就是f(x1,x2,x3)+f(-x1,-x2,x3)+f(-x1,x2,-x3)…
[题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1237 [题目大意] 求[1,n][1,n]最大公约数之和 [题解] 枚举最大公约数k,得到答案为2*∑(k*phi_sum(n/k))-n*(n+1)/2 phi_sum可以利用杜教筛实现 [代码] #include <cstdio> #include <algorithm> using namespace std; typedef lon…
1238 最小公倍数之和 V3 三种做法!!! 见学习笔记,这里只贴代码 #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; typedef long long ll; const int N = 4641590, U = 4641588, mo = 1e9+7, in…
1237 最大公约数之和 V3 题意:求\(\sum_{i=1}^n\sum_{j=1}^n(i,j)\) 令\(A(n)=\sum_{i=1}^n(n,i) = \sum_{d\mid n}d \cdot \varphi(\frac{n}{d})\) \(ans = 2*\sum_{i=1}^n A(i) -\sum_{i=1}^ni\) 套路推♂倒 \[ S(n) =\sum_{i=1}^n\sum_{d\mid i}d \cdot \varphi(\frac{i}{d}) =\sum_{i…
1086 背包问题 V2 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 有N种物品,每种物品的数量为C1,C2......Cn.从中任选若干件放在容量为W的背包里,每种物品的体积为W1,W2......Wn(Wi为整数),与之相对应的价值为P1,P2......Pn(Pi为整数).求背包能够容纳的最大价值. Input 第1行,2个整数,N和W中间用空格隔开.N为物品的种类,W为背包的容量.(1 <= N <= 100,1 <= W <= 50…
1085 背包问题  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 在N件物品取出若干件放在容量为W的背包里,每件物品的体积为W1,W2--Wn(Wi为整数),与之相对应的价值为P1,P2--Pn(Pi为整数).求背包能够容纳的最大价值. Input 第1行,2个整数,N和W中间用空格隔开.N为物品的数量,W为背包的容量.(1 <= N <= 100,1 <= W <= 10000) 第2 - N + 1行,每行2个整数,Wi和Pi,…
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1238 设\(A(n)=\sum\limits_{i=1}^n\frac{in}{(i,n)}\),则\(ans=\sum\limits_{i=1}^n\left(2A(i)-i\right)\) \[ \begin{aligned} A(n)=&n\sum_{d|n}\sum_{i=1}^{\frac nd}i\left[\left(i,\frac nd\right)=…
题目传送门 http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1237 数学题真是做的又爽又痛苦,爽在于只要推出来公式基本上就是AC,痛苦就在于推公式... 题意很简单,求 $\Large\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}gcd(i,j)$ 其中$n\le 10^{10}$ 这个题有很多做法,除了普及组的$O(n^2\log n)$做法,还有用莫比乌斯反演+分块优化的$O(…
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1120 题解: 1.看到这种题,马上就想到了卡特兰数.但卡特兰数最快也要O(n)的时间复杂度去递推或者预处理,而n的范围是1e9,所以行不通.但发现Mod的值为10007,感觉突破口在里头,但没有头绪. 2.后来发现了Lucas定理: C(n,m)%p=C(n/p,m/p)*C(n%p,m%p)%p,p为素数 这个式子大大缩小了n的范围,因此就可以直接上卡特兰数…