matlab练习程序(单层感知器)】的更多相关文章

一.单层感知器 1958年[仅仅60年前]美国心理学家FrankRosenblant剔除一种具有单层计算单元的神经网络,称为Perceptron,即感知器.感知器研究中首次提出了自组织.自学习的思想,而且对对所解决的问题存在着收敛算法,并能从数学上严格证明,因而对神经网络的研究齐了重要作用. 1.单层感知器模型 单层感知器是指只有一层处理单元的感知器,如果包括输入层在内,应为两层.如图所示: a.输入层:$ X=(x_1, x_2, .., x_i, ..., x_n)^T$. b.输出层:$…
clear all; close all; clc; %生成两组已标记数据 randn(); mu1=[ ]; S1=[ ; ; 0.4]; P1=mvnrnd(mu1,S1,); mu2=[ ]; S2=[ ; ; 1.9]; P2=mvnrnd(mu2,S2,); P = [P1;P2]'; %设置标记 T1 = zeros(,); T2 = ones(,); T = [T1;T2]'; net=newp([ ; ; ],); %生成感知器,net是返回参数 net.trainParam.e…
1.创建一个感知器 实例 % example4_1.m p=[-,;-,] % 输入向量有两个分量,两个分量取值范围均为-~ % p = % % - % - t=; % 共有1个输出节点 net=newp(p,t); % 创建感知器 P=[,,,;,,,] % 用于训练的输入数据,每列是一个输入向量 % P = % % % T=[,,,] % 输入数据的期望输出 % T = % % net=train(net,P,T); % train函数用于训练 newP=[,0.9]'; % 第一个测试数据…
如果对Rosenblatt感知器不了解,可以先查看下相关定义,然后对照下面的代码来理解. 代码中详细解释了各步骤的含义,有些涉及到了数学公式的解释. 这篇文章是以理解Rosenblatt感知器的原理为主,所以只实现了单层感知器,比较复杂的 多层的感知器会在后面写到. 下面是详细代码及说明: ''' 算法:Rosenblatt感知器=====>单层感知器 特性:提供快速的计算,能够实现逻辑计算中的NOT.OR.AND等简单计算 本质:在坐标轴轴里面存在一条直线(面)可以把数据分成两类 ''' ''…
手撕机器学习系列文章就暂时更新到此吧,目前已经完成了支持向量机SVM.决策树.KNN.贝叶斯.线性回归.Logistic回归,其他算法还请允许Taoye在这里先赊个账,后期有机会有时间再给大家补上. 更新至此,也是收到了部分读者的好评.虽然不多,但还是非常感谢大家的支持,希望每一位阅读过的读者都能够有所收获. 该系列文章的全部内容都是Taoye纯手打,也是参考了不少书籍以及公开资源,系列总字数在15W左右(含源码),总页数为138,后期会再慢慢填补,更多的技术文章可以来访Taoye的公众号:玩世…
这篇总结继续复习分类问题.本文简单整理了以下内容: (一)线性判别函数与广义线性判别函数 (二)感知器 (三)松弛算法 (四)Ho-Kashyap算法 闲话:本篇是本系列[机器学习基础整理]在timeline上最新的,但实际上还有(七).(八)都发布的比这个早,因为这个系列的博客是之前早就写好的,不过会抽空在后台修改,感觉自己看不出错误(当然因为水平有限肯定还是会有些错误)了之后再发出来.后面还有SVM.聚类.tree-based和boosting,但现在的情况是前八篇结束后,本系列无限期停更-…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 本笔记源于CDA-DSC课程,由常国珍老师主讲.该训练营第一期为风控主题,培训内容十分紧凑,非常好,推荐:CDA数据科学家训练营 ------------------------------------------ 一.信用风险建模中神经网络的应用 申请评分可以将神经网络+逻辑回归联合使用. <公平信用报告法>制约,强调评分卡的可解释性.所以…
感知器是由美国计算机科学家罗森布拉特(F.Roseblatt)于1957年提出的.感知器可谓是最早的人工神经网络.单层感知器是一个具有一层神经元.采用阈值激活函数的前向网络.通过对网络权值的训练,可以使感知器对一组输人矢量的响应达到元素为0或1的目标输出,从而实现对输人矢量分类的目的. 下图是一个感知器: 可以看到,一个感知器有如下组成部分: 01 输入权值: 其中,每一个输入分量Xj(j=1,2…,r)通过一个权值分量wj,进行加权求和,并作为阈值函数的输人.偏差 b 的加入(对应上图中的 w…
What is deep learning? 在人工智能领域,有一个方法叫机器学习.在机器学习这个方法里,有一类算法叫神经网络.神经网络如下图所示: 上图中每个圆圈都是一个神经元,每条线表示神经元之间的连接.我们可以看到,上面的神经元被分成了多层,层与层之间的神经元有连接,而层内之间的神经元没有连接.最左边的层叫做输入层,这层负责接收输入数据:最右边的层叫输出层,我们可以从这层获取神经网络输出数据.输入层和输出层之间的层叫做隐藏层. 隐藏层比较多(大于2)的神经网络叫做深度神经网络.而深度学习,…
多层感知器分类器(MLPC)是基于前馈人工神经网络(ANN)的分类器. MLPC由多个节点层组成. 每个层完全连接到网络中的下一层. 输入层中的节点表示输入数据. 所有其他节点,通过输入与节点的权重w和偏置b的线性组合,并应用激活函数,将输入映射到输出. 对于具有K + 1层的MLPC,这可以以矩阵形式写成如下: 中间层中的节点使用sigmoid(logistic)函数: 输出层中的节点使用softmax函数: 输出层中的节点数量N对应于类的数量. MLPC采用反向传播学习模型(BP算法). 我…