gcd以及exgcd入门讲解】的更多相关文章

gcd就是最大公约数,gcd(x, y)一般用(x, y)表示.与此相对的是lcm,最小公倍数,lcm(x, y)一般用[x, y]表示. 人人都知道:lcm(x, y) = x * y / gcd(x, y) 证明起来也不是很难: (这真的是我自己写的,因为博客园不支持这格式……) 至于gcd的求法,想必各位在高中都学过辗转相除法和更相减损之术,这里只讲辗转相除法(更相减损之术略慢) 首先不妨设 x ≤ y,则gcd(x, y)  =gcd(x, x +y) = gcd(x, y - x).所…
原文:Mysql C语言API编程入门讲解 软件开发中我们经常要访问数据库,存取数据,之前已经有网友提出让鸡啄米讲讲数据库编程的知识,本文就详细讲解如何使用Mysql的C语言API进行数据库编程.  API,全称Application Programming Interfaces,即应用程序编程接口,我们可以调用这些接口,执行API函数提供的功能.  Mysql C语言API就是用C语言编写的Mysql编程接口,使用这些接口函数可以实现对Mysql数据库的查询等操作.  Mysql的安装  要进…
CSS入门讲解 HTML人+CSS衣服+JS动作=>DHTML CSS: 层叠样式表 CSS2.0 和 CSS3.0 版本,目前学习CSS2, CSS3只是多了一些样式出来而已 CSS 干啥用的 一句话:CSS 能控制,你这个页面 长什么样子. 就比如 一个光着身子的人,给他什么衣服,什么发型,七七八八的. 你可以将内容和格式分离. 你可以以前所未有的能力控制页面布局. 你可以制作体积更小下载更快的网页.安全 你可以将许多网页同时更新,比以前快更容易. 5. 浏览器将成为你更友好的界面 Web…
在线演示 本地下载 ​这篇文章中,介绍HTML5游戏引擎pixi.js的基本使用. 相关代码如下: Javascript 导入类库:(使用极客的cdn服务:http://cdn.gbtags.com) <scripttype="text/javascript"src="http://cdn.gbtags.com/pixi.js/1.6.1/pixi.js"></script> 引擎使用: .... .... 阅读原文:HTML5游戏开发引擎P…
上一课,大家知道,手机详细模板我们没有写出来,使用的是一个占位模板. 这一课,我们先实现手机详细信息视图,这个视图会在用户点击手机列表中的一部手机时被显示出来. 为了实现手机详细信息视图,我们将会使用$http来获取数据. 以下json对象就是手机详细的信息,我们会在手机详细信息视图中显示这些数据. { "additionalFeatures": "Contour Display, Near Field Communications (NFC),...", &quo…
LINK 其实就是三个板子 1.快速幂 快速幂,通过把指数转化成二进制位来优化幂运算,基础知识 2.gcd和exgcd gcd就是所谓的辗转相除法,在这里用取模的形式体现出来 \(gcd(a,b)\),因为b中的a对答案没有贡献,考虑把b变成\(b-(b/a)*a\)答案是一样的 所以就可以变成了\(gcd(b,a%b)\),保证大的数在前面,这样当小的数变成0,大的数就是最大公约数 exgcd就是解线性方程\(ax+by=c\) 有解的条件是\(c\%gcd(a,b)=0\) 然后考虑gcd的…
poj2104 k-th number 主席树入门讲解 定义:主席树是一种可持久化的线段树 又叫函数式线段树   刚开始学是不是觉得很蒙逼啊 其实我也是 主席树说简单了 就是 保留你每一步操作完成之后的线段树 然后有可加减性 也就是说你每添加的一个点的那棵树都给你保留下来了 呃 ... 这么说好像还是有点生涩 那么就拿poj2104来举例子吧 慢慢讲我觉得会很好的 题意就是给你一个100000长度的数字 然后100000次询问[L,R]之间第k大的数字是多少 这个很容易看出来 暴力根本不可以 黑…
gcd 辗转相除法求gcd证明 \(gcd(a, b) == gcd(b, a\%b)\) 证明: 设: \(d\)为\(a\)与\(b\)的一个公约数, 则有\(d|b\) \(d|a\) 设: \(a = k \times b + r\) 则有\(r = a \% b\) \(r = a - kb\) 同除以\(d\)可得 \(r\over d\) \(=\) \(a\over d\) \(-\) \(kb\over d\) 又\(\because d|b , d|a\) \(\theref…
数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p2^{a2}p3^{a3}...pn^{an},b=p1^{b1}p2^{b2}p3^{b3}...pn^{bn}\),那么\(gcd(a,b)=\prod_{i=1}^{n}pi^{min(ai,bi)},lcm(a,b)=\prod_{i=1}^{n}pi^{max(ai,bi)}\)(0和任何…
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(ll l,ll r,ll &x,ll &y) { if(r==0){x=1;y=0;return l;} else { ll d=exgcd(r,l%r,y,x); y-=l/r*x; return d; } } 3.求a关于m的乘法逆元 ll mod_inverse(ll a,ll m){ l…