Transformer模型由<Attention is All You Need>提出,有一个完整的Encoder-Decoder框架,其主要由attention(注意力)机制构成.论文地址:https://arxiv.org/abs/1706.03762. 其整体结构如图所示: 模型分为编码器(Encoder)和解码器(Decoder)两部分,包含内部结构的总体结构如下图所示: 图二 在论文中编码器部分由6个相同编码器叠在一起,解码器部分也是由6个相同解码器叠在一起,编码器之间不共享参数.(…
1 概述 在介绍Transformer模型之前,先来回顾Encoder-Decoder中的Attention.其实质上就是Encoder中隐层输出的加权和,公式如下: 将Attention机制从Encoder-Decoder框架中抽出,进一步抽象化,其本质上如下图 (图片来源:张俊林博客): 以机器翻译为例,我们可以将图中的Key,Value看作是source中的数据,这里的Key和Value是对应的.将图中的Query看作是target中的数据.计算Attention的整个流程大致如下: 1)…
一.简介 论文链接:<Attention is all you need> 由google团队在2017年发表于NIPS,Transformer 是一种新的.基于 attention 机制来实现的特征提取器,可用于代替 CNN 和 RNN 来提取序列的特征. 在该论文中 Transformer 用于 encoder - decoder 架构.事实上 Transformer 可以单独应用于 encoder 或者单独应用于 decoder . Transformer = 编码器 + 解码器 输入自…
2013年----word Embedding 2017年----Transformer 2018年----ELMo.Transformer-decoder.GPT-1.BERT 2019年----Transformer-XL.XLNet.GPT-2 2020年----GPT-3 Transformer 谷歌提出的Transformer模型,用全Attention的结构代替的LSTM,在翻译上取得了更好的成绩.这里基于Attention Is All You Need,对 Transformer…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…
一.结构 1.编码器 Transformer模型---encoder - nxf_rabbit75 - 博客园 2.解码器 (1)第一个子层也是一个多头自注意力multi-head self-attention层,但是,在计算位置i的self-attention时屏蔽掉了位置i之后的序列值,这意味着:位置i的attention只能依赖于它之前的结果,不能依赖它之后的结果.因此,这种self-attention也被称作masked self-attention. (2)第二个子层是一个多头注意力m…
Transformer改进了RNN最被人诟病的训练慢的缺点,利用self-attention机制实现快速并行. 它是由编码组件.解码组件和它们之间的连接组成. 编码组件部分由一堆编码器(6个 encoder)构成.解码组件部分也是由相同数量(与编码器对应)的解码器(decoder)组成的. 所有的编码器在结构上都是相同的,但它们没有共享参数.每个解码器都可以分解成两个子层. BERT大火却不懂Transformer?读这一篇就够了 大数据文摘 1月8日 大数据文摘与百度NLP联合出品 编译:张驰…
1. Transformer模型 在Attention机制被提出后的第3年,2017年又有一篇影响力巨大的论文由Google提出,它就是著名的Attention Is All You Need[1].这篇论文中提出的Transformer模型,对自然语言处理领域带来了巨大的影响,使得NLP任务的性能再次提升一个台阶. Transformer是一个Seq2Seq架构的模型,所以它也由Encoder与Decoder这2部分组成.与原始Seq2Seq 模型不同的是:Transformer模型中没有RN…
原创作者 | 疯狂的Max 01 背景及动机 Transformer是目前NLP预训练模型的基础模型框架,对Transformer模型结构的改进是当前NLP领域主流的研究方向. Transformer模型结构中每层都包含着残差结构,而残差结构中最原始的结构设计是Post-LN结构,即把Layer Norm (LN) 放在每个子层处理之后,如下图Figure 1(a)所示:而其他的一些预训练模型如GPT-2,则将LN改到每个子层处理之前,被定义为Pre-LN,如下图Figure 1(b),有论文[…
Django 06 Django模型基础1(ORM简介.数据库连接配置.模型的创建与映射.数据的增删改查) 一.ORM系统 #django模型映射关系 #模型类-----数据表 #类属性-----表字段名 #1.模型类必须写在app下的models.py文件中 #2.模型如果需要映射到数据库,所在的app必须被安装 #3.一个数据表对于一个模型 类,表中的字段对于模型中的类属性 二.数据库的链接配置和模型类的创建及映射 #数据库的配置 #1.在settings.py中配置DATABASES DA…