主要观点:基于sliding window(SW)类的方法,如TURN,可以达到很高的AR,但定位不准:基于Group的方法,如TAG,AR有明显的上界,但定位准.所以结合两者的特长,加入Complementary Filtering(互补滤波)模块,实际上就是加一个网络预测TAG能不能搞,不能搞就用SW. 第一阶段:视频被划分为等长的单元,使用两层时序卷积生成unit-level的actionness score,基于这一分数序列,分别使用TAG和滑动窗口生成两组proposals,其中TAG…