深度学习GPU加速配置方法】的更多相关文章

本节详细说明一下深度学习环境配置,Ubuntu 16.04 + Nvidia GTX 1080 + Python 3.6 + CUDA 9.0 + cuDNN 7.1 + TensorFlow 1.6. Python 3.6 首先安装 Python 3.6,这里使用 Anaconda 3 来安装,下载地址:https://www.anaconda.com/download/#linux,点击 Download 按钮下载即可,这里下载的是 Anaconda 3-5.1 版本,如果下载速度过慢可以选…
​编者按:在深度学习"红透"半边天的同时,当前很多深度学习框架却面临着共同的性能问题:被频繁调用的代数运算符严重影响模型的执行效率. 本文中,微软亚洲研究院研究员薛继龙将为大家介绍能够轻松玩转计算性能的"加速神器"--内核融合,探讨内核融合在加速深度学习上的主要方法以及当前面临的主要挑战. 如今,较为常见的深度学习框架(如CNTK.TensorFlow和Caffe2等)都会将一个深度学习的模型抽象成为一个由一些基本运算符(Operator)组成的有向无环的数据流图(…
深度学习主机环境配置: Ubuntu16.04 + GeForce GTX 1070 + CUDA8.0 + cuDNN5.1 + TensorFlow 最近在公司做深度学习相关的学习和实验,原来一直在自己的电脑上安装虚拟机跑,速度实在太慢,主机本身性能太弱,独显都没有,物理安装Ubuntu也没多大意义,所以考虑用公司性能最强悍的游戏主机(i7 6700+GTX 1070) 做实验,这台主机平时是用来跑HTC VIVE的,现在归我用了o(*≧▽≦)ツ. 原本以为整个一套安装下来会很顺利,一路火花…
  深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0 发表于2016年07月15号由52nlp 接上文<深度学习主机攒机小记>,这台GTX1080主机准备好之后,就是配置深度学习环境了,这里选择了比较熟悉Ubuntu系统,不过是最新的16.04版本,另外在Nvidia GTX1080的基础上安装相关GPU驱动,外加CUDA8.0,因为都比较新,所以踩了很多坑. 1. 安装Ubuntu16.04 不考虑双系统,直接安装 Ubuntu16.04,从ub…
接上文<深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0>,我们继续来安装 TensorFlow,使其支持GeForce GTX 1080显卡. 1 下载和安装cuDNN cuDNN全称 CUDA Deep Neural Network library,是NVIDIA专门针对深度神经网络设计的一套GPU计算加速库,被广泛用于各种深度学习框架,例如Caffe, TensorFlow, Theano, Torch, CNTK等. The NVIDIA…
Windows下深度学习python的配置 1.安装包的下载 (1)anaconda (2)pycharm 2.安装教程 (1)anaconda a.降版本 b.换源 (2)pycharm a.修改hosts b.下载激活文件 c.修改配置 d.编译环境配置 3.深度学习的第三方库的安装 4.个人小习惯 5.推荐 1.安装包的下载 首先,明白深度学习需要什么?python编程语言.pycharm编译环境.keras or keras-gpu?cuda & cudnn ?第三方库?等等一些列的问题…
如何挑选深度学习 GPU? 深度学习是一个对计算有着大量需求的领域,从一定程度上来说,GPU的选择将从根本上决定深度学习的体验.因此,选择购买合适的GPU是一项非常重要的决策.那么2020年,如何选择合适的GPU呢?这篇文章整合了网络上现有的GPU选择标准和评测信息,希望能作为你的购买决策的参考. 1 是什么使一个GPU比另一个GPU更快? 有一些可靠的性能指标可以作为人们的经验判断.以下是针对不同深度学习架构的一些优先准则: Convolutional networks and Transfo…
深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam) 深度学习笔记(一):logistic分类 深度学习笔记(二):简单神经网络,后向传播算法及实现 深度学习笔记(三):激活函数和损失函数 深度学习笔记:优化方法总结 深度学习笔记(四):循环神经网络的概念,结构和代码注释 深度学习笔记(五):LSTM 深度学习笔记(六):Encoder-Decoder模型和Attention模型…
这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于Deep Learning Processors的Slides笔记,主要参考了[1]中的笔记,自己根据paper和slides读一遍,这里记一下笔记,方便以后查阅. 14.1 A 2.9TOPS/W Deep Convolutional Neural Network SoC in FD-SOI 28…
前言 如果你是一个完美主义者,那么请绕过此文,请参考<深度学习篇——Tensorflow配置(完美主义模式)> 安装 pip install tensorflow ok,只要不报错,安装就完成了,就可以用了. 错误填坑(不断更新) 1.pip错误:TypeError: parse() got an unexpected keyword argument 'transport_encoding' 解决办法:输入命令 conda install -c anaconda html5lib 然后 co…