当我们在谈论一个模型好坏的时候,我们常常会听到准确率(Accuracy)这个词,我们也会听到"如何才能使模型的Accurcy更高".那么是不是准确率最高的模型就一定是最好的模型? 这篇博文会向大家解释准确率并不是衡量模型好坏的唯一指标,同时我也会对其他衡量指标做出一些简单说明. 首先我们先要了解混淆矩阵(Confusion Matrix), 如下图,混淆矩阵经常被用来衡量一个分类模型在测试样本上的性能,本文提到的所有衡量标准都会用到下面混淆矩阵中出现的的四个值 真正例和真反例表示被正确预测的数据…
Precision又叫查准率,Recall又叫查全率.这两个指标共同衡量才能评价模型输出结果. TP: 预测为1(Positive),实际也为1(Truth-预测对了) TN: 预测为0(Negative),实际也为0(Truth-预测对了) FP: 预测为1(Positive),实际为0(False-预测错了) FN: 预测为0(Negative),实际为1(False-预测错了) 总的样本个数为:TP+TN+FP+FN. Accuracy/Precision/Recall的定义 Accura…
一.TP TN FP FN TP:标签为正例,预测为正例(P),即预测正确(T) TN:标签为负例,预测为负例(N),即预测正确(T) FP:标签为负例,预测为正例(P),即预测错误(F) FN:标签为正例,预测为负例(N),即预测错误(F) 其中 T:True    F:False    P:Positive    N:Negative 由于缩写较为难记,我将其分别记为:真的正样本(TP),真的负样本(TN),假的正样本(FP),假的负样本(FN) 二.accuracy precision r…
BERT预训练模型在诸多NLP任务中都取得最优的结果.在处理文本分类问题时,即可以直接用BERT模型作为文本分类的模型,也可以将BERT模型的最后层输出的结果作为word embedding导入到我们定制的文本分类模型中(如text-CNN等).总之现在只要你的计算资源能满足,一般问题都可以用BERT来处理,此次针对公司的一个实际项目——一个多类别(61类)的文本分类问题,其就取得了很好的结果. 我们此次的任务是一个数据分布极度不平衡的多类别文本分类(有的类别下只有几个或者十几个样本,有的类别下…
目录 metrics 评价方法 TP , FP , TN , FN 概念 计算流程 Accuracy , Precision ,Recall Average Precision PR曲线 AP计算 Average Precision mAP 参考资料 metrics 评价方法 针对谁进行评价? 对于物体分类到某个类别的 预测结果 和 真实结果 的差距进行评价(二分类) 在多分类问题中,评价方法是逐个类计算的,不是所有类一起算!是只针对一个类算,每个类别有自己的指标值! 也就是对每个类别,预测结果…
华盛顿大学 machine learning :classification  笔记 第6周 precision & recall 1.accuracy 局限性 我们习惯用 accuracy 评价一个分类器模型的准确程度,accuracy即正确预测的样本数/预测样本总数, 一般情况下这种评价都适用. 但假设一个这样的二分类器,95%的数据都是 +1 ,分类器直接把所有数据预测为 +1,那这个分类器的accuracy 为95%, 很高,但显然这不是个好的分类器.对于这样的数 据,评价一个分类器模型…
1. 四个概念定义:TP.FP.TN.FN 先看四个概念定义: - TP,True Positive - FP,False Positive - TN,True Negative - FN,False Negative 如何理解记忆这四个概念定义呢? 举个简单的二元分类问题 例子: 假设,我们要对某一封邮件做出一个判定,判定这封邮件是垃圾邮件.还是这封邮件不是垃圾邮件? 如果判定是垃圾邮件,那就是做出(Positive)的判定: 如果判定不是垃圾邮件,那就做出(Negative)的判定. Tru…
记正样本为P,负样本为N,下表比较完整地总结了准确率accuracy.精度precision.召回率recall.F1-score等评价指标的计算方式: (右键点击在新页面打开,可查看清晰图像) 简单版: precision = TP / (TP + FP) # 预测为正的样本中实际正样本的比例 recall = TP / (TP + FN) # 实际正样本中预测为正的比例 accuracy = (TP + TN) / (P + N) F1-score = / [( / precision) +…
tf.keras.metric 里面竟然没有实现 F1 score.recall.precision 等指标,一开始觉得真不可思议.但这是有原因的,这些指标在 batch-wise 上计算都没有意义,需要在整个验证集上计算,而 tf.keras 在训练过程中计算 acc.loss 都是一个 batch 计算一次的,最后再平均起来.Keras 2.0 版本将 precision, recall, fbeta_score, fmeasure 等 metrics 移除了. 虽然 tf.keras.me…
针对二分类的结果,对模型进行评估,通常有以下几种方法: Precision.Recall.F-score(F1-measure)TPR.FPR.TNR.FNR.AUCAccuracy   真实结果 1 0 预测结果 1 TP(真阳性)  FP(假阳性) 0 FN(假阴性) TN(真阴性) TP(True Positive):预测结果为正类,实际上就是正类 FP(False Positive):预测结果为正类,实际上是反类 FN(False negative):预测结果为反类,实际上是正类 TN(…