UVA11324 The Largest Clique 题目描述 给你一张有向图 \(G\),求一个结点数最大的结点集,使得该结点集中的任意两个结点 \(u\) 和 \(v\) 满足:要么 \(u\) 可以达 \(v\),要么 \(v\) 可以达 \(u\)(\(u,v\)相互可达也行). 输入输出格式 输入格式: 第一行:测试数据组数\(T\),每组数据的格式如下: 第一行为结点数 \(n\) 和边数 \(m\) ,结点编号 \(1-n\). 以下\(m\)行每行两个整数 \(u\) 和 \(…
先跑一边dijkstra算出从1到i的最短距离dis[i] 然后建反向边 从n开始记忆化搜索,(p,k)表示1到p的距离=dis[p]+k的方案数 答案就是$\sum\limits_{i=0}^{k}{(n,i)}$ 考虑0环,如果我记搜的时候搜到了0环,那答案就是-1,可以先用tarjan处理一下0边 看看有哪些点在零环上 (其实也可以开个栈 做到(p,k)的时候看(p,k)是不是已经在栈中了 如果是那就是-1) #include<bits/stdc++.h> #define CLR(a,x…
原文地址 Problem Portal Portal1:UVa Portal2:Luogu Portal3:Vjudge Description Given a directed graph \(\text{G}\), consider the following transformation. First, create a new graph \(\text{T(G)}\) to have the same vertex set as \(\text{G}\). Create a direc…
题目链接:https://vjudge.net/problem/UVA-11324 题解: 题意:给出一张有向图,求一个结点数最大的结点集,使得任意两个结点u.v,要么u能到达v, 要么v能到达u(u和v也可以互相到达). 1.可知在一个强连通分量中,任意两个点都可以互相到达.那么我们就对每个强连通分量进行缩点,并记录每个分量的结点个数. 2.缩点之后,就是一张有向无环图了,这时就转化为求:从有向无环图中找出一条权值之和最大的路径.简单的记忆化搜索即可实现. 前向星建图 + 前向星重建: #in…
给一个有向图G,求一个子图要求当中随意两点至少有一边可达. 问这个子图中最多含多少个顶点. 首先找SCC缩点建图.每一个点的权值就是该点包括点的个数. 要求当中随意两点可达,实际上全部边仅仅能同方向,不然一定有两点不可达, 这样题目又转换成求DAG图最长路的问题了. 然后从入度为0的点開始记忆化搜索.dp[i]表示以i为根最多包括多少点. #include <iostream> #include <cstring> #include <string> #include…
<题目链接> 题目大意: 给你一张有向图 G,求一个结点数最大的结点集,使得该结点集中的任意两个结点 u 和 v 满足:要么 u 可以达 v,要么 v 可以达 u(u,v相互可达也行). 解题分析: 该点集需满足两个要求:1.任意两点至少有一方能够到达另外一点;2.点数尽可能的多. 通过画图分析可以知道,对于那些强连通分量来说,要不就全部加入该点集,要不就全部不能加入,所以直接对原图进行缩点,进行重新构图.然后,根据重新构造的DAG图我们可以知道,要使该点集中任意两点至少有一方能够到达另外一点…
对这个奇形怪状的图tarjan,然后重新连边把图变成DAG,然后记忆化搜索即可 #include<iostream> #include<cstdio> using namespace std; const int N=100005; int n,a[N],h[N],cnt,dfn[N],low[N],tot,s[N],top,bl[N],si[N],col,mp[N]; bool v[N]; struct qwe { int ne,to; }e[N]; int read() { i…
洛谷 2921 记忆化搜索 tarjan 传送门 (https://www.luogu.org/problem/show?pid=2921) 做这题的经历有点玄学,,起因是某个random题的同学突然发现了一个0提交0通过的题目,然后就引发了整个机房的兴趣,,然后,,就变成了16提交7通过,, 初看上去这题目就是记忆化搜索,但是环的存在使得普通的记忆化会导致漏解,继续观察发现整张图为n个点n条边,即是多个基环外向树,使用tarjan找到图中的环,显然可知,对于环上一点,能取到的最大值是环的长度,…
题目给一张有向图,要把点分组,问最少要几个组使得同组内的任意两点不连通. 首先考虑找出强连通分量缩点后形成DAG,强连通分量内的点肯定各自一组,两个强连通分量的拓扑序能确定的也得各自一组. 能在同一组的就是两个强连通分量在不同的从入度0到出度0的强连通分量的路径上. 那么算法很直观就能想到了,用记忆化搜索,d[u]表示从强连通分量u出发到出度为0的强连通分量最少要几个组(最多有几个点). #include<cstdio> #include<cstring> #include<…
题目大概是,每个人收到信息后会把信息发给他认识的一个人如此下去,问一开始要把信息发送给谁这样看到信息的人数最多. 首先找出图中的SCC并记录每个SCC里面的点数,如果传到一个SCC,那么里面的人都可以看到信息. 然后SCC缩点后就形成DAG,直接记忆化搜索,d(u)搜索从u点出发开始传最多能传多少人. 最后就是找答案了. #include<cstdio> #include<cstring> #include<algorithm> using namespace std;…