Active Object Localization with Deep Reinforcement Learning ICCV 2015 最近Deep Reinforcement Learning算是火了一把,在Google Deep Mind的主页上,更是许多关于此的paper,基本都发在ICML,AAAI,IJCAI等各种人工智能,机器学习的牛会顶刊,甚至是Nature,可以参考其官方publication page: https://www.deepmind.com/publicatio…
原文: A Discriminative Feature Learning Approach for Deep Face Recognition 用于人脸识别的center loss. 1)同时学习每个类的深度特征的中心点 2)对深度特征和其对应的类中心的距离有一定的惩罚 提出的center loss函数在CNN中可以训练并且很容易优化. 联合softmax loss和center loss,可以同时增加类间分散程度(inter-class dispension)与类内紧凑程度(intra-cl…
http://openaccess.thecvf.com/content_cvpr_2017/papers/Jie_Deep_Self-Taught_Learning_CVPR_2017_paper.pdf Deep Self-Taught Learning for Weakly Supervised Object Localization. Zequn Jie, Yunchao Wei, Xiaojie Jin, Jiashi Feng, Wei Liu 亮点 监督学习中用难例挖掘,弱监督中靠…
URL:http://ydwen.github.io/papers/WenECCV16.pdf这篇论文主要的贡献就是提出了Center Loss的损失函数,利用Softmax Loss和Center Loss联合来监督训练,在扩大类间差异的同时缩写类内差异,提升模型的鲁棒性. 为了直观的说明softmax loss的影响,作者在对LeNet做了简单修改,把最后一个隐藏层输出维度改为2,然后将特征在二维平面可视化,下面两张图分别是MNIDST的train集和test集,可以发现类间差异比较明显,但…
目录 Grad-CAM:Visual Explanations from Deep Networks via Gradient-based Localization 1.Abstract 2.Introduction 3.Approach 4.Evaluating Localization 4.1. Weakly-supervised Localization 4.2 Weakly-supervised Segmentation 5.Evaluating Visualizations 5.1 E…
神经网络已经在很多场景下表现出了很好的识别能力,但是缺乏解释性一直所为人诟病.<Grad-CAM:Visual Explanations from Deep Networks via Gradient-based Localization>这篇论文基于梯度为其可解释性做了一些工作,它可以显著描述哪块图片区域对识别起了至关重要的作用,以热度图的方式可视化神经网络的注意力.本博客主要是基于pytorch的简单工程复现.原文见这里,本代码基于这里. 1 import torch 2 import t…
What's the most effective way to get started with deep learning?       29 Answers     Yoshua Bengio, My lab has been one of the three that started the deep learning approach, back in 2006, along with Hinton's... Answered Jan 20, 2016   Originally Ans…
学习深度CNN去噪先验用于图像恢复(Learning Deep CNN Denoiser Prior for Image Restoration)-Kai Zhang 代码:https://github.com/cszn/IRCNN 机翻: 基于模型的优化方法和区别的学习方法已经解决各种逆问题的两种主要策略在低级视觉领域.通常情况下,这两种方法有各自的优点和缺点,例如,基于模型的优化方法处理不同的逆问题很灵活,但通常需要花费大量时间和复杂的先验信息来获得良好表现; 同时,基于区别学习方法测试速度…
CVPR2017的一篇论文 Learning Deep CNN Denoiser Prior for Image Restoration: 一般的,image restoration(IR)任务旨在从观察的退化变量$y$(退化模型,如式子1)中,恢复潜在的干净图像$x$ $y \text{} =\text{}\textbf{H}x\text{}+\text{}v $ where $\textbf{H}$denotes 退化矩阵,$\textbf{v}$denotes 加性高斯白噪声(additi…