首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
(模板)poj1681 高斯消元法求异或方程组(无解、唯一解、多解)
】的更多相关文章
(模板)poj1681 高斯消元法求异或方程组(无解、唯一解、多解)
题目链接:https://vjudge.net/problem/POJ-1681 题意:类似于poj1222,有n×n的01矩阵,翻转一个点会翻转其上下左右包括自己的点,求最少翻转多少点能使得矩阵全0. 思路: 同样的可以枚举第一行的状态,这里不说了. 用高斯消元法来解这道题,每个点的状态表示一个变量,那么有n*n个方程,n*n个变量的方程组,用高斯消元法来解,可能存在无解,唯一解,多解的情况.多解的时候要枚举自由变元的状态. AC代码: /* poj1681 开关问题,高斯消元法解异或方程组…
poj1753 (高斯消元法求异或方程组)
题目链接:http://poj.org/problem?id=1753 题意:经典开关问题,和poj1222一样,进行两次高斯消元即可,只用初始化的时候改一下初始状态.可能存在无解或多解的情况,多解要枚举自由变元的所有状态. AC代码: #include<cstdio> #include<algorithm> #include<cmath> #include<cstring> #include<cstdlib> using namespace s…
洛谷P3389 【模板】高斯消元法(+判断是否唯一解)
https://www.luogu.org/problemnew/show/P3389 这里主要说说怎么判断不存在唯一解 我们把每一行的第一个非零元称为关键元 枚举到一个变量,如果剩下的行中该变量的系数都是0,那么这个元素就是一个自由元 若方程组有唯一解,第i行的关键元是第i个 否则,一定至少存在某一行i,它的关键元是第j个(j>i) 具体实现: 假设当前枚举到第i行,我们会把第i行之后的 第i列元素最大的那一行 交换到第i行 只需要换完之后加一个判断:if(fabs(a[r][i])<eps…
洛谷P3389 【模板】高斯消元法
P3389 [模板]高斯消元法 题目背景 Gauss消元 题目描述 给定一个线性方程组,对其求解 输入输出格式 输入格式: 第一行,一个正整数 n 第二至 n+1行,每行 n+1 个整数,为a1,a2⋯an 和 b,代表一组方程. 输出格式: 共n行,每行一个数,第 i行为 xi (保留2位小数) 如果不存在唯一解,在第一行输出"No Solution". 输入输出样例 输入样例#1: 3 1 3 4 5 1 4 7 3 9 3 2 2 输出样例#1: -0.97 5.18 -…
「LuoguP3389」【模板】高斯消元法
题目背景 Gauss消元 题目描述 给定一个线性方程组,对其求解 输入输出格式 输入格式: 第一行,一个正整数 nn 第二至 n+1n+1行,每行 n+1n+1 个整数,为a_1, a_2 \cdots a_na1,a2⋯an 和 bb,代表一组方程. 输出格式: 共n行,每行一个数,第 ii行为 x_ixi (保留2位小数) 如果不存在唯一解,在第一行输出"No Solution". 输入输出样例 输入样例#1: 复制 3 1 3 4 5 1 4 7 3 9 3 2 2 输出…
P3389 【模板】高斯消元法
高斯消元求解n元一次线性方程组的板子题: 先举个栗子: • 2x + y - z = 8-----------① •-3x - y + 2z = -11---------② •-2x + y + 2z = -3----------③ 先将它存到矩阵中: ②+①* (2/3) ③+① 接着对①变换 得到x,y,z: 但是我们想到,如果它有在原方程中就有两个或多个方程本质上是一样的,那他不就解不出来了咩? 比如: 最后得出: 这显然就属于无解的情况 又比如: 这显然就属于无穷多解的情况 这里…
洛谷——P3389 【模板】高斯消元法
P3389 [模板]高斯消元法 以下内容都可省略,直接转大佬博客%%% 高斯消元总结 只会背板子的蒟蒻,高斯消元是什么,不知道诶,看到大佬们都会了这个水题,蒟蒻只好也来切一切 高斯消元最大用途就是解多元一次方程组——引自某大佬原话 的确是这样的,那么如何去做呢? 类比二元一次方程组: $a_1x+b_1y=c_1$ $a_2x+b_2y=c_2$ emmm,怎么做呢?消去一项!嗯. 也就是把第$i$个方程的第$i$项变成1 $\frac{a_1}{a_1}x+\frac{b_1}{a_1}y=\…
题解 P3389 【【模板】高斯消元法】
题解 P3389 [[模板]高斯消元法] 看到大家都没有重载运算符,那我就重载一下运算符给大家娱乐一下 我使用的是高斯-约旦消元法,这种方法是精度最高的(相对地) 一句话解释高斯约旦消元法: 通过加减消元法,依次制定x0,并通过加减消元法消去其他方程的x0的系数.对于这样的系数矩阵我们只进行初等变幻保证了其正确性 看代码吧,主要是希望帮助大家可以学到一些重载的方法 #include<iostream> #include<cstdio> #include<algorithm&g…
[Luogu 3389]【模板】高斯消元法
Description 给定一个线性方程组,对其求解 Input 第一行,一个正整数 n 第二至 n+1 行,每行 n+1 个整数,为a1,a2⋯an和 b,代表一组方程.1,a2⋯an 和 bbb,代表一组方程. Output 共n行,每行一个数,第 i 行为 xi 如果不存在唯一解,在第一行输出"No Solution". Sample Input 3 1 3 4 5 1 4 7 3 9 3 2 2 Sample Output -0.97 5.18 -2.39 HI…
LG3389 「模板」高斯消元法 高斯消元
问题描述 LG3389 题解 高斯消元,是用来解\(n\)元一次方程组的算法,时间复杂度\(O(n^3)\) 这样就构造出了这个方程组的矩阵 目标就是把这个矩阵左边\(n \times n\)消为单位矩阵 \(\mathrm{Code}\) #include<bits/stdc++.h> using namespace std; void read(int &x){ x=0;char ch=1;int fh; while(ch!='-'&&(ch<'0'||ch&…