[code&data] [pdf] ARCT 任务是 Habernal 等人在 NACCL 2018 中提出的,即在给定的前提(premise)下,对于某个陈述(claim),相反的两个依据(warrant0,warrant1)哪个能支持前提到陈述的推理. 他们还在 SemEval-2018 中指出,这个任务不仅需要模型理解推理的结构,还需要一定的外部知识. 作者尝试使用 BERT 处理该任务,调整输入为 [CLS,Claim,Reason,SEP,Warrant],通过共用的 linear l…
什么是深度学习?   一种机器学习算法,based on [多层][非线性变换]的[神经网络]结构 优点:可以使用 低维 稠密 连续 的向量表示不同粒度的语言单元, 还可以使用循环.卷积.递归等神经网络模型对不同的语言单元向量进行组合,获得更大的语言单元, 甚至可以将图像.语言等不同的东西表示在同一个语义向量空间中 ===================================== 1. Robust, 鲁棒性,健壮性,指系统稳定,抗风险,比如面对训练数据有部分异常值,依然可以表现稳定.…
论文笔记系列-Neural Network Search :A Survey 论文 笔记 NAS automl survey review reinforcement learning Bayesian Optimization evolutionary algorithm  注:本文主要是结合自己理解对原文献的总结翻译,有的部分直接翻译成英文不太好理解,所以查阅原文会更直观更好理解. 本文主要就Search Space.Search Strategy.Performance Estimatio…
[论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximation 本文结构 解决问题 主要贡献 主要内容 参考文献 (1) 解决问题 大多数先前的工作,要么是没有考虑到网络的高阶相似度(如谱聚类,DeepWalk,LINE,Node2Vec),要么是考虑了但却使得算法效率很低,不能拓展到大规模网络(如GraRep). (2) 主要贡献 Contribution 1. 将许多现有的NRL算法架构总结…
Generating Fluent Adversarial Examples for Natural Languages   ACL 2019 为自然语言生成流畅的对抗样本 摘要 有效地构建自然语言处理(NLP)任务的对抗性攻击者是一个真正的挑战.首先,由于句子空间是离散的.沿梯度方向做小扰动是困难的.其次,生成的样本的流畅性不能保证.在本文中,我们提出了MHA,它通过执行Metropolis-Hastings抽样来解决这两个问题,其建议是在梯度的指导下设计的.在IMDB和SNLI上的实验表明,…
1 Continuous-Time Dynamic Network Embeddings Abstract ​ 描述一种将时间信息纳入网络嵌入的通用框架,该框架提出了从CTDG中学习时间相关嵌入 Conclusion ​ 描述了一个将时间信息纳入网络嵌入方法的通用框架.该框架为推广现有的基于随机游走的嵌入方法提供了基础,用于从连续时间动态网络学习动态(时间相关)网络嵌入 Figure and table 图1:这幅图的边标签为时间,注意v4 v1 v2不是一个合法的时序游走,因为v1v2的边时序…
6 dyngraph2vec: Capturing Network Dynamics using Dynamic Graph Representation Learning207 link:https://scholar.google.com.hk/scholar_url?url=https://arxiv.org/pdf/1809.02657&hl=zh-TW&sa=X&ei=bSGfYviOJOOEywThnbSYCQ&scisig=AAGBfm0bzwUuDvjnCX…
(1)用对抗性的源实例攻击翻译模型; (2)使用对抗性目标输入来保护翻译模型,提高其对对抗性源输入的鲁棒性. 生成对抗输入:基于梯度 (平均损失)  ->  AdvGen 我们的工作处理由白盒NMT模型联合生成的扰动样本  ->  知道受攻击模型的参数 ADVGEN包括encoding, decoding: (1)通过生成对训练损失敏感的对抗性源输入来攻击NMT模型; (2)用对抗性目标输入对NMT模型进行了防御,目的是降低相应对抗性源输入的预测误差. 贡献: 1. 研究了一种用于生成反例的白…
摘要: 无状态网络功能是一个新的网络功能虚拟化架构,解耦了现有的网络功能设计到无状态处理组件以及数据存储层,在打破紧密耦合的同时,实现了更具可伸缩性和可恢复性的网络功能基础设施.无状态NF处理实例是围绕高效管道构建的,利用DPDK实现高性能网络I/O,打包为Docker容器以便于部署,以及基于预期请求模式优化的数据存储接口,以高效访问基于Ramcloud的数据存储.网络范围的编排器监视实例的负载和故障,管理实例以扩展和提供弹性,并利用基于OpenFlow的网络将流量定向到实例. 我们实现了三个示…
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS TUTORIAL, PART 2 – IMPLEMENTING A RNN WITH PYTHON, NUMPY AND THEANO . github地址 在这篇博文中,我们将会使用Python从头开始实现一个循环神经网络,并且利用Theano(一个在GPU上执行操作的库)优化原始的实现.所有的代码…
Building your Recurrent Neural Network - Step by Step Welcome to Course 5's first assignment! In this assignment, you will implement your first Recurrent Neural Network in numpy. Recurrent Neural Networks (RNN) are very effective for Natural Language…
Building your Recurrent Neural Network - Step by Step Welcome to Course 5's first assignment! In this assignment, you will implement your first Recurrent Neural Network in numpy. Recurrent Neural Networks (RNN) are very effective for Natural Language…
Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者和相关链接 方法概括 创新点和贡献 方法细节 实验结果 问题讨论 总结与收获点 作者补充信息 参考文献 作者和相关链接 论文下载 作者: tong he, 黄伟林,乔宇,姚剑 方法概括 使用改进版的MSER(CE-MSERs,contrast-enhancement)提取候选字符区域: 使用新的CN…
白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 2.  论文思路和方法 1)  问题范围: 单词识别 2)  CNN层:使用标准CNN提取图像特征,利用Map-to-Sequence表示成特征向量: 3)  RNN层:使…
Sequence to Sequence Learning with NN <基于神经网络的序列到序列学习>原文google scholar下载. @author: Ilya Sutskever (Google)and so on 一.总览 DNNs在许多棘手的问题处理上取得了瞩目的成绩.文中提到用一个包含2层隐藏层神经网络给n个n位数字排序的问题.如果有好的学习策略,DNN能够在监督和反向传播算法下训练出很好的参数,解决许多计算上复杂的问题.通常,DNN解决的问题是,算法上容易的而计算上困难…
XiangBai——[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 创新点和贡献 方法细节 实验结果 总结与收获点 作者和相关链接 作者 论文下载 廖明辉,石葆光, 白翔, 王兴刚 ,刘文予 代码下载 方法概括 文章核心: 改进版的SSD用来解决文字检测问题 端到端识别的pipeline: Step 1: 图像输入到修改版SSD网络中 + 非极大值抑制(NMS)→…
ShuffleNet: An Extremely Efficient Convolutional Neural Network for MobileDevices…
论文地址:https://indico2.conference4me.psnc.pl/event/35/contributions/3367/attachments/779/817/Thu-1-10-6.pdf 利用循环神经网络抑制非线性残差回声 摘要 免提通信设备的声学前端会对扬声器和麦克风之间的线性回声路径带来各种失真.虽然放大器可能会引入一个无记忆的非线性,但从扬声器通过设备外壳传递到麦克风的机械振动会引起记忆的非线性,这很难弥补.这些失真极大地限制了线性AEC算法的性能.虽然针对个别用例…
论文标题:An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 论文作者: Baoguang Shi, Xiang Bai and Cong Yao 论文代码的下载地址:http://mc.eistar.net/~xbai/CRNN/crnn_code.zip 论文地址:https://arxiv.org/p…
1. 文章内容概述 本人精读了事件抽取领域的经典论文<Event Extraction via Dynamic Multi-Pooling Convolutional Neural Network>,并作出我的读书报告.这篇论文由中科院自动化所赵军.刘康等人发表于ACL2015会议,提出了用CNN模型解决事件抽取任务. 在深度学习没有盛行之前,解决事件抽取任务的传统方法,依赖于较为精细的特征设计已经一系列复杂的NLP工具,并且泛化能力较低.针对此类问题,这篇论文提出了一个新颖的事件抽取方法,能…
文章来源:https://blog.csdn.net/u013058162/article/details/80470426 3D Deep Leaky Noisy-or Network 论文阅读 原文:Evaluate the Malignancy of Pulmonary Nodules Using the 3D Deep Leaky Noisy-or Network 博文参考:Doublle Tree的博客中Evaluate the Malignancy of Pulmonary Nodu…
提出了模型和损失函数 论文名称:扩展卷积密集连接神经网络用于时域实时语音增强 论文代码:https://github.com/ashutosh620/DDAEC 引用:Pandey A, Wang D L. Densely connected neural network with dilated convolutions for real-time speech enhancement in the time domain[C]//ICASSP 2020-2020 IEEE Internati…
论文地址:TCNN:时域卷积神经网络用于实时语音增强 论文代码:https://github.com/LXP-Never/TCNN(非官方复现) 引用格式:Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE International Conference on Ac…
Progressive Neural Network  Google DeepMind 摘要:学习去解决任务的复杂序列 --- 结合 transfer (迁移),并且避免 catastrophic forgetting (灾难性遗忘) --- 对于达到 human-level intelligence 仍然是一个关键性的难题.本文提出的 progressive networks approach 朝这个方向迈了一大步:他们对 forgetting 免疫,并且可以结合 prior knowledg…
记笔记目的:刻意地.有意地整理其思路,综合对比,以求借鉴.他山之石,可以攻玉. <Convolutional Simplex Projection Network for Weakly Supervised Semantic Segmentation>-20180724,一篇来自德国波恩大学与锡根大学的paper. 论文code: https://github.com/briqr/CSPN Abstract The method introduces a novel layer which a…
1.BP neural network optimized by PSO algorithm on Ammunition storage reliability prediction 文献简介文献来源:https://ieeexplore.ieee.org/document/8242856 文献级别:EI检索 摘要:Storage reliability of the ammunition dominates the efforts in achieving the mission reliab…
[论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40th Annual Computer Software and Applications Conference) 单位: Nagoya University(名古屋大学).NTT Secure Platform Laboratories(NTT安全平台实验室) 方法概述 数据:81个恶意软件日志文件…
HYPERSPECTRAL IMAGE CLASSIFICATION USING TWOCHANNEL  DEEP  CONVOLUTIONAL NEURAL NETWORK 论文地址:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7730324 1.文章简介: 该论文是用双通道卷积神经网络CNN分别提取空谱信息,然后将得到的抽象特征级联为全连接层的输入,以此作为空谱联合信息输入两层全连接层以及softmax层.此外,文中针对小…
今年去参加了ASPLOS 2017大会,这个会议总体来说我感觉偏系统和偏软一点,涉及硬件的相对少一些,对我这个喜欢算法以及硬件架构的菜鸟来说并不算非常契合.中间记录了几篇相对比较有趣的paper,今天简单写一篇. SC-DCNN: Highly-Scalable Deep Convolutional Neural Network using Stochastic Computing 单位作者: 我们知道在神经网络计算中,最主要的计算就是乘加,本篇重点就是解释了什么是Stochastic Comp…
最近ISSCC2017大会刚刚举行,看了关于Deep Learning处理器的Session 14,有一些不错的东西,在这里记录一下. A 2.9TOPS/W Deep Convolutional Neural Network SoC in FD-SOI 28nm for Intelligent Embedded Systems 单位:STMicroelectronics(意法半导体) 这是一篇很综合芯片SOC设计,总体架构如下: 本文采用的DSP簇作为加速阵列,包含8个DSP簇,每簇内含2个3…