sklearn PCA的使用】的更多相关文章

import numpy as np from sklearn.decomposition import PCA # 训练数据 train_data = np.array([[1, 2, 3], [4, 8, 12], [16, 32, 48]]) # 构造PCA实例,n_components:目标维度:whiten:是否白化 pca = PCA(n_components=2, whiten=True) # 使用数据训练PCA pca.fit(train_data) # 数据降维 source…
PCA降维 一.原理 这篇文章总结的不错PCA的数学原理. PCA主成分分析是将原始数据以线性形式映射到维度互不相关的子空间.主要就是寻找方差最大的不相关维度.数据的最大方差给出了数据的最重要信息. 二.优缺点 优:将高维数据映射到低维,降低数据的复杂性,识别最重要的多个特征 不足:不一定需要,且可能损失有用信息 适用数值型数据 三.步骤 1.原始数据X,对于每列属性,去平均值(也可以对数值进行标准分化) 2.计算样本点的协方差矩阵(列间两两计算相关性) 3.求出协方差矩阵的特征值和对应的特征向…
在介绍n_components参数之前,首先贴一篇PCA参数详解的文章:http://www.cnblogs.com/akrusher/articles/6442549.html. 按照文章中对于n_components的介绍,我对一个1000x9000的array进行了主成分分析,n_components选择为"mle",即自动选择(因为刚接触PCA,并不知道咋设置( ˇˍˇ )),尝试几次,每次都会报出下面的错误. 百思不得其解,终于通过阅读源码找到了原因. 就是因为svd_sol…
最近太忙,又有一段时间没写东西了. pca是机器学习中一个重要的降维技术,是特征提取的代表.关于pca的实现原理,在此不做过多赘述,相关参考书和各大神牛的博客都已经有各种各样的详细介绍. 如需学习相关数学理论,请移驾.T_T 简单说一下pca的实现,首先对于一个矩阵X,我们计算X·XT,显然这个一个半正定矩阵,可以做特征值分解,然后取出k个最大的特征值及其对应的特征向量就可以表达整个原矩阵.若X·XT=p-1Λp,因为p是单位矩阵,所以p-1=pT,即X·XT=p-1·Λ1/2·(p-1·Λ1/…
同为降维工具,二者的主要区别在于, 所在的包不同(也即机制和原理不同) from sklearn.decomposition import PCA from sklearn.manifold import TSNE 因为原理不同,导致,tsne 保留下的属性信息,更具代表性,也即最能体现样本间的差异: TSNE 运行极慢,PCA 则相对较快: 因此更为一般的处理,尤其在展示(可视化)高维数据时,常常先用 PCA 进行降维,再使用 tsne: data_pca = PCA(n_components…
一.基于Sklearn的PCA代码实现 import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.decomposition import PCA digits =…
sklearn中调用PCA算法 PCA算法是一种数据降维的方法,它可以对于数据进行维度降低,实现提高数据计算和训练的效率,而不丢失数据的重要信息,其sklearn中调用PCA算法的具体操作和代码如下所示: #sklearn中调用PCA函数进行相关的训练和计算(自定义数据)import numpy as npimport matplotlib.pyplot as pltx=np.empty((100,2))x[:,0]=np.random.uniform(0.0,100.0,size=100)x[…
PCA对手写数字数据集的降维 1. 导入需要的模块和库 from sklearn.decomposition import PCA from sklearn.ensemble import RandomForestClassifier as RFC from sklearn.model_selection import cross_val_score import matplotlib.pyplot as plt import pandas as pd import numpy as np 2.…
重要接口inverse_transform  在上周的特征工程课中,我们学到了神奇的接口inverse_transform,可以将我们归一化,标准化,甚至做过哑变量的特征矩阵还原回原始数据中的特征矩阵,这几乎在向我们暗示,任何有inverse_transform这个接口的过程都是可逆的.PCA应该也是如此.在sklearn中,我们通过让原特征矩阵X右乘新特征空间矩阵V(k,n)来生成新特征矩阵X_dr,那理论上来说,让新特征矩阵X_dr右乘V(k,n)的逆矩阵 ,就可以将新特征矩阵X_dr还原为…
PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,PCA和SVD涉及了大量的矩阵计算,两者都是运算量很大的模型,但其实,SVD有一种惊人的数学性质,即是它可以跳过数学神秘的宇宙,不计算协方差矩阵,直接找出一个新特征向量组成的n维空间,而这个n维空间就是奇异值分解后的右矩阵(所以一开始在讲解降维过程时,我们说”生成新特征向量组成的空间V",并非巧合,而…