BZOJ3456:城市规划——题解】的更多相关文章

https://www.lydsy.com/JudgeOnline/problem.php?id=3456 求出n个点的简单(无重边无自环)无向连通图数目 模数很熟悉,先敲一个NTT. 然后通过推导式子就做完啦! 我觉得就算怎么讲也没有下面这一位好:http://blog.miskcoo.com/2015/05/bzoj-3456 另外多项式求逆:http://blog.miskcoo.com/2015/05/polynomial-inverse 至少我学到了:当你有个卷积知道答案,求卷积的一项…
题目链接 BZOJ3456 题解 真是一道经典好题,至此已经写了分治\(NTT\),多项式求逆,多项式求\(ln\)三种写法 我们发现我们要求的是大小为\(n\)无向联通图的数量 而\(n\)个点的无向图是由若干个无向联通图构成的 那么我们设\(F(x)\)为无向联通图数量的指数型生成函数 设\(G(x)\)为无向图数量的指数型生成函数 \(G(x)\)很好求 而 \[G(x) = \frac{F(x)}{1!} + \frac{F^2(x)}{2!} + \frac{F^3(x)}{3!} +…
城市规划 时间限制:40s      空间限制:256MB 题目描述 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了.  刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接或间接的连通. 为了省钱, 每两个城市之间最多只能有一条直接的贸易路径. 对于两个建立路线的方案, 如果存在一个城市对, 在两个方案中是否建立路线不一样, 那么这两个方案就是不同的, 否则就是相同的. 现在你需要求出一共有多少不同的方案.  好了, 这就…
题目链接 BZOJ3456 题解 之前我们用分治\(ntt\)在\(O(nlog^2n)\)的复杂度下做了这题,今天我们使用多项式求逆 设\(f_n\)表示\(n\)个点带标号无向连通图数 设\(g_n\)表示\(n\)个点图的数量,显然\(g_n = 2^{{n \choose 2}}\) 枚举\(1\)号点所在联通块大小,我们有 \[g_n = \sum\limits_{i = 1}^{n} {n - 1 \choose i - 1}f_{i}g_{n - i}\] 代入\(g_n\) \[…
题目链接 BZOJ3456 题解 据说这题是多项式求逆 我太弱不会QAQ,只能\(O(nlog^2n)\)分治\(NTT\) 设\(f[i]\)表示\(i\)个节点的简单无向连通图的数量 考虑转移,直接求不好求,我们知道\(n\)个点无向图的数量是\(2^{{n \choose 2}}\)的,考虑用总数减去不连通的 既然图不连通,那么和\(1\)号点联通的点数一定小于\(n\),我们枚举和\(1\)号点所在联通块大小,就可以得到式子: \[f[n] = 2^{{n \choose 2}} - \…
Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接或间接的连通. 为了省钱, 每两个城市之间最多只能有一条直接的贸易路径. 对于两个建立路线的方案, 如果存在一个城市对, 在两个方案中是否建立路线不一样, 那么这两个方案就是不同的, 否则就是相同的. 现在你需要求出一共有多少不同的方案. 好了, 这就是困扰阿狸的问题. 换句话说, 你需要求出n个点的…
题目描述 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了.刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接或间接的连通.为了省钱, 每两个城市之间最多只能有一条直接的贸易路径. 对于两个建立路线的方案, 如果存在一个城市对, 在两个方案中是否建立路线不一样, 那么这两个方案就是不同的, 否则就是相同的. 现在你需要求出一共有多少不同的方案.好了, 这就是困扰阿狸的问题. 换句话说, 你需要求出n个点的简单(无重边无自环)…
设f[i]为连通图的数量,g[i]为不连通图的数量,显然有f[i]=2i*(i-1)/2-g[i],g[i]通过枚举1所在连通块大小转移,有g[i]=Σf[j]*C(i-1,j-1)·2(i-j)*(i-j-1)/2,也即f[i]=2i*(i-1)/2-(i-1)!·Σf[j]·2(i-j)*(i-j-1)/2/(j-1)!/(i-j)!.显然是一个卷积形式,可以分治NTT. 进一步将式子化的更优美一点.设h[i]=2i*(i-1)/2,有f[i]=h[i]-(i-1)!·Σf[j]·h[i-j…
題目大意 求出有n个点的有标号简单连通无向图的数目. 题解 什么破玩意,直接输出\(2^{C_n^2}\)走人 我们发现这张图要求连通,而上式肯定不能保证连通. 其实上式表示的是不保证连通的有标号简单无向图. 就差在一个连通上啊. 所以我们设\(f(x)\)表示有x个点的有标号简单连通无向图的数目. 然后设\(g(x)\)为上式,即不保证连通时的方案数 于是我们枚举节点1所在的连通块的大小,有 \[g(n) = \sum_{i=1}^nC_{n-1}^{i-1}f(i)g(n-1)\] 即 \[…
题目分析: 容易想到生成函数的构造方法. 令g(n)表示n个点的无向图个数,f(n)表示n个点的无向连通图的个数.式子是显然的. 容易发现式子是卷积的形式,写出生成函数,然后多项式求逆后多项式乘法即可. 代码: #include<bits/stdc++.h> using namespace std; int n; ; ; ; int A[maxn],B[maxn],IB[maxn],B0[maxn],F[maxn]; ],ord[maxn]; int fast_pow(int now,long…