kafka leader平衡策略】的更多相关文章

1.1个partition的默认leader是replicas中的第一个replica 2.kafka controller会启动一个定时的check线程,kafka默认是5min周期,mafka是30min周期.去check当前的leader信息 3.该线程的工作原理: controller check每台alive的broker当前的元数据信息中的partition的leader信息,然后和默认的leader(1)的值进行比较,求出imbalanceRatio(比例). 4.比较发现这个比例…
kafka leader选举 一条消息只有被ISR中的所有follower都从leader复制过去才会被认为已提交.这样就避免了部分数据被写进了leader,还没来得及被任何follower复制就宕机了,而造成数据丢失.而对于producer而言,它可以选择是否等待消息commit,这可以通过request.required.acks来设置.这种机制确保了只要ISR中有一个或者以上的follower,一条被commit的消息就不会丢失. 有一个很重要的问题是当leader宕机了,怎样在follo…
问题 用过 Kafka 的同学用过都知道,每个 Topic 一般会有很多个 partitions.为了使得我们能够及时消费消息,我们也可能会启动多个 Consumer 去消费,而每个 Consumer 又会启动一个或多个streams去分别消费 Topic 里面的数据.我们又知道,Kafka 存在 Consumer Group 的概念,也就是 group.id 一样的 Consumer,这些 Consumer 属于同一个Consumer Group,组内的所有消费者协调在一起来消费订阅主题(su…
如果某个broker挂了,leader副本在该broker上的分区就要重新进行leader选举.来简要描述下leader选举的过程 1.4.1 KafkaController会监听ZooKeeper的/brokers/ids节点路径,一旦发现有broker挂了,执行下面的逻辑.这里暂时先不考虑KafkaController所在broker挂了的情况,KafkaController挂了,各个broker会重新leader选举出新的KafkaController 1.4.2 leader副本在该br…
单线程消费 以之前生产者中的代码为例,事先准备好了一个 Topic:data-push,3个分区. 先往里边发送 100 条消息,没有自定义路由策略,所以消息会均匀的发往三个分区. 先来谈谈最简单的单线程消费,如下图所示: 由于数据散列在三个不同分区,所以单个线程需要遍历三个分区将数据拉取下来. 单线程消费的示例代码: 这段代码大家在官网也可以找到:将数据取出放到一个内存缓冲中最后写入数据库的过程. 先不讨论其中的 offset 的提交方式. 通过消费日志可以看出: 取出的 100 条数据确实是…
Whenever a broker stops or crashes leadership for that broker's partitions transfers to other replicas. This means that by default when the broker is restarted it will only be a follower for all its partitions, meaning it will not be used for client…
关于Kafka日志留存(log retention)策略的介绍,网上已有很多文章.不过目前其策略已然发生了一些变化,故本文针对较新版本的Kafka做一次统一的讨论.如果没有显式说明,本文一律以Kafka 1.0.0作为分析对象. 所谓日志留存策略,就是Kafka保存topic数据的规则,我将按照以下几个方面分别介绍留存策略: 留存策略类型 留存机制及其工作原理 一.留存策略类型 目前,与日志留存方式相关的策略类型主要有两种:delete和compact.这两种留存方式的机制完全不同.本文主要讨论…
一.更改日志输出级别 config/log4j.properties中日志的级别设置的是TRACE,在长时间运行过程中产生的日志大小吓人,所以如果没有特殊需求,强烈建议将其更改成INFO级别.具体修改方法如下所示,将config/log4j.properties文件中最后的几行中的TRACE改成INFO,修改前如下所示: log4j.logger.kafka.network.RequestChannel$=TRACE, requestAppender log4j.additivity.kafka…
当我们使用kafka向指定Topic发送消息时,如果该Topic具有多个partition,无论消费者有多少,最终都会保证一个partition内的消息只会被一个Consumer group中的一个Consumer消费,也就是说同一Consumer group中的多个Consumer自动会起到负载均衡的效果. 1.消息构造 下面我们就针对调用kafka API发送消息到Topic时partition的分配策略,分析下其内部具体的源码码实现. 首先看下kafka API中消息体ProducerRe…
“ 为什么Kafka在RangeAssigor.RoundRobinAssignor的基础上,又新增了PartitionAssignor,它解决了什么问题?” 背景 用过Kafka的同学应该都知道Kafka的分区和消费组的概念.在Kafka中,每个Topic会包含多个分区,默认情况下一个分区只能被一个消费组下面的一个消费者消费,这里就产生了分区分配的问题.Kafka中提供了多重分区分配算法(PartitionAssignor)的实现:RangeAssigor.RoundRobinAssignor…