【CUDA学习】全局存储器】的更多相关文章

前一篇CUDA学习,我们已经完成了编程环境的配置,现在我们继续深入去了解CUDA编程.本博文分为三个部分,第一部分给出一个代码示例,第二部分对代码进行讲解,第三部分根据这个例子介绍如何部署和发起一个kernel函数. 一.代码示例 二.代码解说 申明一个函数,用于检测CUDA运行中是否出错. kernel函数,blockIdx.x表示block在x方向的索引号,blockDim.x表示block在x方向的维度,threadIdx.x表示thread在x方向的索引号. 这里也许你会问,为什么在x方…
CUDA中使用shared_memory可以加速运算,在矩阵乘法中是一个体现. 矩阵C = A * B,正常运算时我们运用 C[i,j] = A[i,:] * B[:,j] 可以计算出结果.但是在CPU上完成这个运算我们需要大量的时间,设A[m,n],B[n,k],那么C矩阵为m*k,总体,我们需要做m*n*k次乘法运算,m*(b-1)*k次加法运算,并且是串行执行,总体的复杂度为O(m*n*k) . 矩阵类: class Matrix { public: int cols; // x int…
今天忙活了3个小时,竟然被一个苦恼的CUDA小例程给困住了,本来是参照Rachal zhang大神的CUDA学习笔记来一个模仿,结果却自己给自己糊里糊涂,最后还是弄明白了一些. RZ大神对CUDA关于kernel,memory的介绍还是蛮清楚,看完决定写一个二维数组的加法.如果是C++里的加法,那就简单了,用C[i][j] = A[i][j] +B[i][j]就可以. void CppMatAdd(int A[M][N],int B[M][N],int C[M][N]){ ;i<M;i++) ;…
全局存储器,即普通的显存,整个网格中的任意线程都能读写全局存储器的任意位置. 存取延时为400-600 clock cycles  非常容易成为性能瓶颈. 访问显存时,读取和存储必须对齐,宽度为4Byte.如果没有正确的对齐,读写将被编译器拆分为多次操作,降低访存性能. 多个half-warp的读写操作如果能够满足合并访问,则多次访存操作会被合并成一次完成. 合并访问的条件,GT200放宽了合并访问的条件. 支持对8 bit.16 bit.32 bit.64 bit数据字的合并访问 相应传输32…
下面简单介绍一些cuda中的共享存储器和全局存储器 共享存储器,shared memory,可以被同一块中的所有线程访问的可读写存储器,生存期是块的生命期. Tesla的每个SM拥有16KB共享存储器. 在编程过程中,有静态的shared memory 动态的shared memory 静态的shared memory 在程序中定义 __shared__ type shared[SIZE]; 动态的shared memory 通过内核函数的每三个参数设置大小 extern __shared__…
转自:http://blog.sina.com.cn/s/blog_48b9e1f90100fm5f.html 结合lec07_intro_cuda.pptx学习 内存类型 CGMA: Compute to Global Memory Access ratio Constant memory只允许device只读,比global memory 能够提供更快更多的并行数据访问路径给kernel. Register和local memory是线程私有的.Shared memory是同一个block中…
来源:http://luofl1992.is-programmer.com/posts/38847.html 编程语言的特点是要实践,实践多了才有经验.很多东西书本上讲得不慎清楚,不妨自己用代码实现一下. 作为例子,我参考了书本上的矩阵相乘的例子,这样开始写代码,然后很自然地出现了各种问题. 以下的内容供大家学习参考,有问题可以留言与我反馈. 开始学着使用 CUDA,实现一个矩阵乘法运算. 首先我们要定义一个矩阵的结构体,话说CUDA是否支持结构体作为设备端的函数的参数呢? 不妨都一股脑试验一下…
0.引言 本文记载了CUDA的学习过程~刚开始接触GPU相关的东西,包括图形.计算.并行处理模式等,先从概念性的东西入手,然后结合实践开始学习.CUDA感觉没有一种权威性的书籍,开发工具变动也比较快,所以总感觉心里不是很踏实.所以本文就是从初学者的角度,从无知开始探索的过程.当然在学习过程中避免不了出现概念性的理解错误,出现描述模糊不确切的地方还望指出,共勉共勉~ 1.CUDA的概念 2.CUDA的模型 CUDA的运行模型,让host中的每个kernel按照线程网格的方式(Grid)在显卡硬件(…
由上一节可知,在main函数中,cuda程序的并行能力是在add<<<N,1>>>( dev_a, dev_b, dev_c )函数中体现的,这里面设置的是由N个block的构成的计算网络即grid,每一个block里面有1个thread存在.那么这种选取有什么用意呢,如何针对自己的计算问题设置计算网络呢? 首先要说明这两个数的选取没有固定的方法,完全是根据自身需求.其实它的完整形式是Kernel<<<Dg,Db, Ns, S>>>(…
为什么要使用共享内存呢,因为共享内存的访问速度快.这是首先要明确的,下面详细研究. cuda程序中的内存使用分为主机内存(host memory) 和 设备内存(device memory),我们在这里关注的是设备内存.设备内存都位于gpu之上,前面我们看到在计算开始之前,每次我们都要在device上申请内存空间,然后把host上的数据传入device内存.cudaMalloc()申请的内存,还有在核函数中用正常方法申请的变量的内存.这些内存叫做全局内存,那么还有没有别的内存种类呢?常用的还有共…