BZOJ 洛谷 \(Description\) 给定一张部分边方向已确定的竞赛图.你需要给剩下的边确定方向,使得图中的三元环数量最多. \(n\leq100\). \(Solution\) 这种选择之间有影响,而且\(n\)很小的题考虑网络流啊. 最理想的情况能得到的三元环个数是\(C_n^3\)个.我们考虑怎样会使三元环个数减少. 如果三个点之间不成三元环,那么一定是某个点入度为\(2\),某个点出度为\(2\),另一个点入度出度都为\(1\). 不妨只考虑入度.如果一个点入度为\(2\),那…
传送门 解题思路 考虑全集-不能构成三元环的个数.如果三个点不能构成三元环,一定有一个点的入度为\(2\),继续扩展,如果一个点的度数为\(3\),则会失去3个三元环.对于一个点来说,它所产生的不能构成三元环的贡献为\(C (deg[x],2)\),而度数每增加\(1\),对于答案的影响就是\(C(deg[x]+1,2)-C(deg[x],2)=deg[x]\),然后就可以建图了.考虑把边当做点,对于一条未确定的边来说,它只能对两个节点中的一个产生\(1\)个度数的贡献,所以让每个边向点连流量为…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2597 三个人之间的关系,除了“剪刀石头布”,就是有一个人赢了2局:所以考虑算补集,则每个人对答案的贡献是 \( -C_{f[ i ]}^{2} = \frac{f[ i ]*(f[ i ]-1)}{2}\) ,其中 f[ i ] 表示这个人赢的局数. 所以一个人多赢了一局,对答案的贡献是 -f[ i ] :再多赢一局,就是 -( f[ i ] + 1 ) ……只要每个人向汇点连足够的边,其…
脑子不太清楚一个zz问题调了好久-- 首先正难则反,因为三元环好像没什么特点,就考虑让非三元环个数最小 考虑非三元环特点,就是环上一定有一个点的入度为2,联系整张图,三元环个数就是每个点C(入度,2)的和 把无向边看成点,这样的点会向两端点的一个贡献一个入度,所以建图,s连这些点流量1费用0,这些边点分别连向他两端的点流量1费用0 然后考虑费用计算部分,把上面那个计算费用的式子差分一下,就发现度数为d的时候增加一个入度,贡献是d-1 所以所有真实点分别向T连若干条流量1费用依次为(d[u],n-…
比较有思维含量的一道题 题意:给混合完全图定向(定向为竞赛图)使得有最多的三元环 三元环条件要求比较高,还不容易分开处理. 正难则反 考虑,什么情况下,三元组不是三元环 一定是一个点有2个入度,一个点有2个出度,另一个点一个入度,一个出度 也就是说,每存在一个>=2入度的点,那么会减少一些三元环 进而考虑,如果一个点有d个入度,那么减少的三元环其实是:C(d,2),即,包括它自己,再包括任意两个指向它的点(这里,a指向b,代表a能赢b),构成的三元组都不是三元环 考虑每个点作为某些个非法三元组的…
2597: [Wc2007]剪刀石头布 链接 分析: 费用流. 首先转化一下问题,整张图最优的情况是存在$C_n^3$个,即任意3个都行,然后考虑去掉最少不满足的三元环. 如果u赢了v,u向v连一条边,如果v有k条入边,那么说明少了$C_k^2$个三元环,所对每场比赛分配度数,求最小费用最大流. 具体地:S向每场比赛连容量为1,花费为0的边:每场比赛向两个人连容量为1,花费为0的边:每个人因为度数不同,花费不同,所以差分后建边. 还有一种随机化+迭代的做法. 代码: #include<cstdi…
[bzoj 1449] 球队收益(费用流) Description Input Output 一个整数表示联盟里所有球队收益之和的最小值. Sample Input 3 3 1 0 2 1 1 1 10 1 0 1 3 3 1 2 2 3 3 1 Sample Output 43 Hint Solution 这题费用流裸题好吧. 先假设所有队在接下来的比赛中都会输掉,算出收益. 但是一场比赛应该有且只有一支球队赢得比赛,所以真实收益和我们算出来的收益就会有一些差值,再计算最小的差值即可. 我们可…
1070: [SCOI2007]修车 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2785  Solved: 1110[Submit][Status][Discuss] Description 同 一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的.现在需要安排这M 位技术人员所维修的车及顺序,使得顾客平均等待的时间最小. 说明:顾客的等待时间是指从他把车送至维修中心到维…
传送门 考虑竞赛图三元环计数,设第\(i\)个点的入度为\(d_i\),根据容斥,答案为\(C_n^3 - \sum C_{d_i}^2\) 所以我们需要最小化\(\sum C_{d_i}^2\) 考虑将\(C_{d_i}^2\)差分,然后通过费用流解决 下面\((a,b)\)边表示流量为\(a\).费用为\(b\)的边 建图: 每一场比赛和每一个人都建一个点 \(S\)向每一场比赛连\((1,0)\)边 每一场比赛若不确定结果则向两个参与者连\((1,0)\)边,如果胜者确定则只向胜者连\((…
题意 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位置(r,c),你可以沿着箭头防线在格子间行走.即如果(r,c)是一个左箭头,那么走到(r,c-1);如果是右箭头那么走到(r,c+1):如果是上箭头那么走到(r-1,c):如果是下箭头那么走到(r+1,c):每一行和每一列都是循环的,即如果走出边界,你会出现在另一侧. 一个完美的循环格是这样定义的:对于任意一个起始位置,你都可以i沿着箭头最终回到起始位置…