目录: 1.什么是depthwise separable convolution? 2.分析计算量.flops 3.参数量 4.与传统卷积比较 5.reference…
目录: 1.什么是group convolution? 和普通的卷积有什么区别? 2.分析计算量.flops 3.分析参数量 4.相比于传统普通卷积有什么优势以及缺点,有什么改进方法? 5.reference   1.group convolution历史       2.计算量       3.参数量       4.相比于传统普通卷积的优缺点,以及改进         5.reference  …
https://zhuanlan.zhihu.com/p/28186857 这个例子说明了什么叫做空间可分离卷积,这种方法并不应用在深度学习中,只是用来帮你理解这种结构. 在神经网络中,我们通常会使用深度可分离卷积结构(depthwise separable convolution). 这种方法在保持通道分离的前提下,接上一个深度卷积结构,即可实现空间卷积.接下来通过一个例子让大家更好地理解. 假设有一个3×3大小的卷积层,其输入通道为16.输出通道为32.具体为,32个3×3大小的卷积核会遍历…
[源码解析] 深度学习流水线并行 PipeDream(2)--- 计算分区 目录 [源码解析] 深度学习流水线并行 PipeDream(2)--- 计算分区 0x00 摘要 0x01 前言 1.1 Profile文件 1.2 总体思路 0x02 图相关 2.1 Graph 2.2 构建图 2.3 反链 0x03 构建反链 3.1 main函数入口 3.2 增强反链 3.3 后续反链 3.4 总体构建 3.5 拓扑排序 3.6 总结 0x04 计算分区 4.1 main函数的逻辑 4.2 动态规划…
按照普通卷积-深度卷积-深度可分离卷积的思路总结. depthwise_conv2d来源于深度可分离卷积,如下论文: Xception: Deep Learning with Depthwise Separable Convolutions 函数定义如下: tf.nn.depthwise_conv2d(input,filter,strides,padding,rate=None,name=None,data_format=None) 除去name参数用以指定该操作的name,data_forma…
前言 理论知识:UFLDL教程和http://www.cnblogs.com/tornadomeet/archive/2013/04/09/3009830.html 实验环境:win7, matlab2015b,16G内存,2T机械硬盘 实验内容:Exercise:Convolution and Pooling.从2000张64*64的RGB图片(它是the STL10 Dataset的一个子集)中提取特征作为训练数据集,训练softmax分类器,然后从3200张64*64的RGB图片(它是th…
import osimport lr as lrimport tensorflow as tffrom pyspark.sql.functions import stddevfrom tensorflow.keras import datasetsos.environ['TF_CPP_MIN_LOG_LEVEL']='2' #只打印error的信息(x,y),_=datasets.mnist.load_data()#x: [60k,28,28]#y: [60k]x=tf.convert_to_t…
知乎上的讨论:https://www.zhihu.com/question/43609045?sort=created 不过看的云里雾里,越看越糊涂. 直到看到了这个:http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html#transposed-convolution-arithmetic 讲的非常清楚非常好…
目录: 1.经典的卷积层是如何计算的 2.分析卷积层的计算量 3.分析卷积层的参数量 4.pytorch实现自动计算卷积层的计算量和参数量 1.卷积操作如下: http://cs231n.github.io/assets/conv-demo/index.html 假设卷积层的输入特征图大小为C_in x H x W, 卷积核大小为K_1 x K_2, padding = P_1 x P_2, stride = S_1 x S_2, filter 数目为C_out. 输出的特征图大小为C_out…
论文标题:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 论文作者:Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam 论文地址:https://arxiv.org/abs/1704.04861…