116、TensorFlow变量的版本】的更多相关文章

import tensorflow as tf v = tf.get_variable("v", shape=(), initializer=tf.zeros_initializer()) assignment = v.assign_add(1) # Because variables are mutable # it's sometimes useful to know what version of a variable's value is being used # at any…
1.下载python3.5.2版本并安装(必须是3.5版本,而且3.5后不带字母的版本) 2.使用下面的地址下载tensorflow的GPU版本 http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy 3.以及tensorflow的依赖protubuf,还有其它比如numpy,scipy等,cuda是cuda8.0的44版本 4.安装cuda8.0,如果有报警信息也是可以装的(如截图) 安装完后看环境变量里有以下两项就表明cuda安装成功! 5.下载与c…
接昨天的博客,这篇随笔将会对本人运行Word2Vec算法时在Gensim以及Tensorflow的不同版本下的运行结果对比.在运行中,参数的调节以及迭代的决定本人并没有很好的经验,所以希望在展出运行的参数以及结果的同时大家可以批评指正,多谢大家的支持! 对比背景: 对比实验所运用的corpus全部都是可免费下载的text8.txt.下载点这里.在训练时,word embedding的维度被调节为200,除了word2vec_basic.py版本的step size为600001外,其余均为15个…
在程序中定义变量很简单,只要定义一个变量名就可以,但是tensorflow有点类似在另外一个世界,因此需要通过当前的世界中跟tensorlfow的世界中进行通讯,来告诉tensorflow的世界中定义了一个变量,这个通讯的空间就是tf类,看个例子就应该能明白: import tensorflow as tf state = tf.Variable(0) print(state.name) 这里定义了一个tensorflow变量,并且设置了一个初始值0,在tensorflow世界中每个变量也有其相…
tensorflow变量: 1.神经网络中的参数权重,偏置等可以作为张量保存到tensorflow的变量中 2.tensorflow变量必须被初始化 3.可被保存到文件中,下次使用重新加载即可 tensorflow说明: tensorflow是一张运算图,用tf.Session运行这张图就得到输出结果 其中这张运算图由节点和带箭头的线组成: 节点表示运算操作,例如+,-等 带箭头的线表示执行运算操作的数据 上图,add表示加法操作,俩个箭头线表示两个相加的数据…
转自:windows10(64位)Anaconda3+Python3.6搭建Tensorflow(cpu版本)及keras 1.本来电脑安装的是anaconda3 5.3.1,但安装的python版本是3.7,后来卸载了安装anaconda3 4.4.0,这个版本是3.6 2.打开Anaconda Prompt conda --version //检查Anaconda是否成功安装(如果成功会显示版本号) conda update conda //更新conda版本 conda create -n…
本文转载自:https://blog.csdn.net/gangeqian2/article/details/79358543 手把手教你windows安装tensorflow的教程参考另一篇博文http://mp.blog.csdn.net/postedit/79307696 此博文是在上文安装CUDA/cuDNN的基础上的个人填坑总结,欢迎指教. CUDA CUDA(Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台. CUDA™是…
import tensorflow as tf x=tf.Variable([1,2]) a=tf.constant([3,3]) sub=tf.subtract(x,a) #增加一个减法op add=tf.add(x,sub) #增加一个加法op #注意变量再使用之前要再sess中做初始化,但是下边这种初始化方法不会指定变量的初始化顺序 init=tf.global_variables_initializer() with tf.Session() as sess: sess.run(init…
前言: TensorFlow 有cpu和 gpu两个版本:gpu版本需要英伟达CUDA 和 cuDNN 的支持,cpu版本不需要:本文主要安装gpu版本. 1.环境 gpu:确认你的显卡支持 CUDA,这里确认. vs2015运行时库:下载64位的,这里下载,下载后安装. python 3.6/3.5:下载64位的,这里下载,下载后安装. pip 9.0.1(确认pip版本 >= 8.1,用pip -V 查看当前 pip 版本,用python -m pip install -U pip升级pip…
系统配置 系统版本: Centos7.6 语言: Python3.5(anaconda3 4.2) 框架: Tensorflow 安装依赖 sudo yum install openjdk-8-jdk git python-dev python3-dev python-numpy python3-numpy build-essential python-pip python3-pip python-virtualenv swig python-wheel libcurl3-dev curl 安装…