QTREE - Query on a tree #number-theory You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, 3...N-1. We will ask you to perfrom some instructions of the following form: CHANGE i ti : change the cost of t…
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类对树的边进行轻重划分的操作,这样做的目的是为了减少某些链上的修改.查询等操作的复杂度. 目前总共有三类:重链剖分,实链剖分和并不常见的长链剖分 重链剖分 实际上我们经常讲的树剖,就是重链剖分的常用称呼. 对于每个点,选择最大的子树,将这条连边划分为重边,而连向其他子树的边划分为轻边. 若干重边连接在…
P3690 [模板]Link Cut Tree (动态树) 认父不认子的lct 注意:不 要 把 $fa[x]$和$nrt(x)$ 混 在 一 起 ! #include<cstdio> void swap(int &a,int &b){a^=b^=a^=b;} #define N 300005 ][N],fa[N],rev[N]; #define lc ch[0][x] #define rc ch[1][x] ][fa[x]]==x||ch[][fa[x]]==x;} void…
题目背景 动态树 题目描述 给定n个点以及每个点的权值,要你处理接下来的m个操作.操作有4种.操作从0到3编号.点从1到n编号. 0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor和.保证x到y是联通的. 1:后接两个整数(x,y),代表连接x到y,若x到y已经联通则无需连接. 2:后接两个整数(x,y),代表删除边(x,y),不保证边(x,y)存在. 3:后接两个整数(x,y),代表将点x上的权值变成y. 输入输出格式 输入格式: 第1行两个整数,分别为n和m,代表点数和操…
P3690 [模板]Link Cut Tree (动态树) 题目背景 动态树 题目描述 给定n个点以及每个点的权值,要你处理接下来的m个操作.操作有4种.操作从0到3编号.点从1到n编号. 0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor和.保证x到y是联通的. 1:后接两个整数(x,y),代表连接x到y,若x到y已经联通则无需连接. 2:后接两个整数(x,y),代表删除边(x,y),不保证边(x,y)存在. 3:后接两个整数(x,y),代表将点x上的权值变成y. 输入输出…
题意 给定n个点以及每个点的权值,要你处理接下来的m个操作.操作有4种.操作从0到3编号.点从1到n编号. 0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor和.保证x到y是联通的. 1:后接两个整数(x,y),代表连接x到y,若x到y已经联通则无需连接. 2:后接两个整数(x,y),代表删除边(x,y),不保证边(x,y)存在. 3:后接两个整数(x,y),代表将点x上的权值变成y. 数据范围: \(1 \leq N, M \leq 3 \cdot {10}^5\) 分析…
鉴于最近写bzoj还有51nod都出现写不动的现象,决定学习一波厉害的算法/数据结构. link cut tree:研究popoqqq那个神ppt. bzoj1036:维护access操作就可以了. #include<cstdio> #include<cstring> #include<cctype> #include<algorithm> #include<queue> using namespace std; #define rep(i,s,…
从这里开始 动态树问题和Link Cut Tree 一些定义 access操作 换根操作 link和cut操作 时间复杂度证明 Link Cut Tree维护链上信息 Link Cut Tree维护子树信息 小结 动态树问题和Link Cut Tree 动态树问题是一类要求维护一个有根树森林,支持对树的分割, 合并等操作的问题. Link Cut Tree(林可砍树?简称LCT)是解决这一类问题的一种数据结构. 一些无聊的定义 Link Cut Tree维护的是动态森林中每棵树的任意链剖分. P…
[BJOI2014]大融合(Link Cut Tree) 题面 给出一棵树,动态加边,动态查询通过每条边的简单路径数量. 分析 通过每条边的简单路径数量显然等于边两侧节点x,y子树大小的乘积. 我们知道裸的LCT只能维护链的信息,那么怎么维护子树大小呢?我们只需要对于节点x维护x的所有虚儿子的子树大小之和vir.那么查询的时候先split(x,y),这样x到y就成为了实链,其他与x相连的节点都是虚儿子.那么x一侧的子树大小就是vir[x]+1,y一侧的子树大小就是vir[y]+1 考虑虚子树大小…
模板题 原理 类似树链剖分对重儿子/长儿子剖分,Link Cut Tree 也做的是类似的链剖分. 每个节点选出 \(0 / 1\) 个儿子作为实儿子,剩下是虚儿子.对应的边是实边/虚边,虚实时可以进行灵活变换的. 实链:实边连起来的极大链,也可以理解为所有实边构成的若干联通块. Splay 维护每个实链,其中中序遍历对应着从上到下维护的路径: 本质上是维护所有实边,用 Splay 中的后继前驱来维护原树的父子关系. 如何维护虚边的父子呢?即实链之间的关系,认父不认子.设 \((u, v)\)…