Intersection over Union(IoU) algorithms】的更多相关文章

IoU算法可用与评估两个多维度数据的相似度,举一个实际应用,做CV,目标检测,我们需要评估模型的识别准确率,不同于二元类问题,普通的评估算法不合适,于是用到了这个算法,这个算法简单易懂,评估效果也不错. 这里主要讨论如何计算并评估两个矩形相交程度.有空再训练一个目标检测器,来试试水.. 第一种对于数据形状是这样的 $ (x_{top-left}, y_{top-left}, w, h) $,意思是:给出了起始坐标,矩形沿着 $ w, h $ 扩展开. 算法实现: double IoU(int*a…
论文原址:https://arxiv.org/pdf/1902.09630.pdf github:https://github.com/generalized-iou 摘要 在目标检测的评测体系中,IoU是最流行的评价准则.然而,在对边界框的参数进行优化时,常用到距离损失,而按照IOU的标准则是取其最大值,二者之间是有一定差别的.对一个标准进行优化的目标函数是其标准本身.比如,对于2D的坐标对齐的边界框,可以直接使用IoU作为回归损失.然而,该方法存在一个弊端,就是当两个边界框不发生重叠时,Io…
首先直观上来看 IoU 的计算公式: 由上述图示可知,IoU 的计算综合考虑了交集和并集,如何使得 IoU 最大,需要满足,更大的重叠区域,更小的不重叠的区域. 两个矩形窗格分别表示: 左上点.右下点的坐标联合标识了一块矩形区域(bounding box),因此计算两块 Overlapping 的 bounding boxes 的 IoU 如下: # ((x1[i], y1[i]), (x2[i], y2[i])) areai = (x2[i]-x1[i]+1)*(y2[i]-y1[i]+1)…
论文地址:Generalized Intersection over Union 一.相关工作 目标检测精度标准 度量检测优劣基本基于 IOU,mAP 是典型的基于 IOU 的标准,但是 mAP 仅有一个 threshold,对于过了线的预测框一视同仁,不能进一步衡量其优劣,所以 MS COCO 挑战赛提出了多 IOU 阈值的综合 mAP 评价标准(就是同时采用几个阈值,计算出多个 mAP 综合打分). Bounding box 表示方法和损失函数 YOLO v1 直接回归 bbox 的位置参数…
Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression 2019-05-20 19:34:55 Paper: https://arxiv.org/pdf/1902.09630.pdf Project page: https://giou.stanford.edu/ Code: https://github.com/generalized-iou 1. Background and M…
Dice Similarity Coefficent vs. IoU Several readers emailed regarding the segmentation performance of the FCN-8s model I trained in Chapter Four. Specifically, they asked for more detail regarding quantification metrics used to measure the segmentatio…
首先我们为什么要使用这些呢? 举个简单的例子,假设我们图像里面只有1个目标,但是定位出来10个框,1个正确的,9个错误的,那么你要按(识别出来的正确的目标/总的正确目标)来算,正确率100%,但是其实效果不是很好,而且还有框的各种情况,因此我们需要下面的指标来衡量一个目标检测模型的好坏. 1.IOU(Intersection Over Union) 这是关于一个具体预测的Bounding box的准确性评估的数据,意义也就是为了根据这个IOU测定你这个框是不是对的,大于等于IOU就是对的,小于就…
Analyzing The Papers Behind Facebook's Computer Vision Approach Introduction You know that company called Facebook? Yeah, the one that has 1.6 billion people hooked on their website. Take all of the happy birthday posts, embarrassing pictures of you…
Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in this task according to this metric; authors are willing to reveal the method White background = authors are willing to reveal the method Grey background…
论文链接: https://arxiv.org/pdf/1506.02640.pdf 代码下载: https://github.com/gliese581gg/YOLO_tensorflow Abstract We present YOLO, a new approach to object detection.Prior work on object detection repurposes classifiers to perform detection. Instead, we frame…