题目传送门 初看题目,好难.再看一次,探索规律,发现这就是有名的斐波那契数列. F[i]=f[i-1]+f[i-2] SO 代码很简单,貌似要开long long,又貌似不用开. #include<bits/stdc++.h> #define ll long long using namespace std; ll n,pre[]={,,}; int main(){ ;i<=;i++) pre[i]=pre[i-]+pre[i-]; scanf("%lld",&…
斐波那契数列:1, 1, 2, 3, 5, 8, 13,...,即 f(n) = f(n-1) + f(n-2). 求第n个数的值. 方法一:迭代 public static int iterativeFibonacci(int n) { //简单迭代 int a = 1, b = 1; for(int i = 2; i < n; i ++) { int tmp = a + b; a = b; b = tmp; } return b; } 方法二:简单递归 public static long…
背景 众所周知,Haskell语言是一门函数式编程语言.函数式编程语言的一大特点就是数值和对象都是不可变的,而这与经常需要对状态目前的值进行修改的动态规划算法似乎有些"格格不入",本文对几乎可以说是动态规划的最简单特例:斐波那契数列的求解提出几种算法(不包括矩阵快速幂优化.Monad和通项公式计算),探讨一下函数式编程如何结合动态规划. 自底向上写法 算法1: f' 1 _ b = b f' n a b = f' (n - 1) b (a + b) f n = f' n 0 1 尾递归…