(一)局部加权回归 通常情况下的线性拟合不能很好地预测所有的值,因为它容易导致欠拟合(under fitting).如下图的左图.而多项式拟合能拟合所有数据,但是在预测新样本的时候又会变得很糟糕,因为它导致数据的 过拟合(overfitting),不符合数据真实的模型.如下图的右图. 下面来讲一种非参数学习方法——局部加权回归(LWR).为什么局部加权回归叫做非参数学习方法呢?首先,参数学习方法是这样一种方法:在训练完成所有数据后得到一系列训练参数,然后根据训练参数来预测新样本的值,这时不再依赖…
(一)朴素贝叶斯多项式事件模型 在上篇笔记中,那个最基本的NB模型被称为多元伯努利事件模型(Multivariate Bernoulli Event Model,以下简称 NB-MBEM).该模型有多种扩展,一种是在上一篇笔记中已经提到的每个分量的多值化,即将p(xi|y)由伯努利分布扩展到多项式分布:还有一种在上一篇笔记中也已经提到,即将连续变量值离散化.本文将要介绍一种与多元伯努利事件模型有较大区别的NB模型,即多项式事件模型(Multinomial Event Model,一下简称NB-M…
(一)生成学习算法 在线性回归和Logistic回归这种类型的学习算法中我们探讨的模型都是p(y|x;θ),即给定x的情况探讨y的条件概率分布.如二分类问题,不管是感知器算法还是逻辑回归算法,都是在解空间中寻找一条直线从而把两种类别的样例分开,对于新的样例,只要判断在直线的哪一侧即可:这种直接对问题求解的方法可以称为判别学习方法.   而生成学习算法则是对两个类别分别进行建模,用新的样例去匹配两个模板,匹配度较高的作为新样例的类别,比如分辨大象(y=1)和狗(y=0),首先,观察大象,然后建立一…
(一)牛顿法解最大似然估计 牛顿方法(Newton's Method)与梯度下降(Gradient Descent)方法的功能一样,都是对解空间进行搜索的方法.其基本思想如下: 对于一个函数f(x),如果我们要求函数值为0时的x,如图所示: 我们先随机选一个点,然后求出该点的切线,即导数,延长它使之与x轴相交,以相交时的x的值作为下一次迭代的值. 更新规则为: 那么如何将牛顿方法应用到机器学习问题求解中呢? 对于机器学习问题,我们优化的目标函数为极大似然估计L,当极大似然估计函数取得最大时,其导…
本课内容: 1.线性回归 2.梯度下降 3.正规方程组   监督学习:告诉算法每个样本的正确答案,学习后的算法对新的输入也能输入正确的答案   1.线性回归 问题引入:假设有一房屋销售的数据如下: 引入通用符号: m =训练样本数 x =输入变量(特征) y =输出变量(目标变量) (x,y)—一个样本 ith—第i个训练样本=(x(i),y(i)) 本例中:m:数据个数,x:房屋大小,y:价格   监督学习过程: 1) 将训练样本提供给学习算法 2) 算法生成一个输出函数(一般用h表示,成为假…
在有监督学习里面有几个逻辑上的重要组成部件[3],初略地分可以分为:模型,参数 和 目标函数.(此部分转自 XGBoost 与 Boosted Tree) 一.模型和参数   模型指给定输入xi如何去预测 输出 yi.我们比较常见的模型如线性模型(包括线性回归和logistic regression)采用 二.目标函数:损失 + 正则 模型和参数本身指定了给定输入我们如何做预测,但是没有告诉我们如何去寻找一个比较好的参数,这个时候就需要目标函数登场了.一般的目标函数包含下面两项 常见的误差函数有…
转载请注明:http://blog.csdn.net/xinzhangyanxiang/article/details/9113681 最近在看Ng的机器学习公开课,Ng的讲法循循善诱,感觉提高了不少.该系列视频共20个,每看完一个视频,我都要记录一些笔记,包括公式的推导,讲解时候的例子等.按照Ng的说法,公式要自己推理一遍才能理解的通透,我觉得自己能够总结出来,发到博客上,也能达到这个效果,希望有兴趣的同学要循序渐进,理解完一个算法再开始学另外一个算法,每个算法总结一遍,虽然看起来很慢,但却真…
课程大纲 欠拟合的概念(非正式):数据中某些非常明显的模式没有成功的被拟合出来.如图所示,更适合这组数据的应该是而不是一条直线. 过拟合的概念(非正式):算法拟合出的结果仅仅反映了所给的特定数据的特质. 非参数学习方法 线性回归是参数学习方法,有固定数目的参数以用来进行数据拟合的学习型算法算法称为参数学习方法.对于非参数学习方法来讲,其参数的数量随着训练样本的数目m线性增长:换句话来说,就是算法所需要的东西会随着训练集合线性增长.局部加权回归算法是非参数学习方法的一个典型代表. 局部加权回归算法…
本文主要解说局部加权(线性)回归.在解说局部加权线性回归之前,先解说两个概念:欠拟合.过拟合.由此引出局部加权线性回归算法. 欠拟合.过拟合 例如以下图中三个拟合模型.第一个是一个线性模型.对训练数据拟合不够好,损失函数取值较大.如图中第二个模型,假设我们在线性模型上加一个新特征 x%5E%7B2%7D" alt="" style="border:0px">项,拟合结果就会好一些. 图中第三个是一个包括5阶多项式的模型,对训练数据差点儿完美拟合. 模…
网易公开课,监督学习应用.梯度下降 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 线性回归(Linear Regression) 先看个例子,比如,想用面积和卧室个数来预测房屋的价格 训练集如下 首先,我们假设为线性模型,那么hypotheses定义为 , 其中x1,x2表示面积和#bedrooms两个feature 那么对于线性模型,更为通用的写法为 其中把θ和X看成向量,并且x0=1,就可以表示成最后那种,两个向量相乘的形式 那…