[GDOI2016模拟3.16]幂 \(X\in[1,A],Y\in[1,B]\),问:\(x^y\)的不用取值个数. \(A,B\)都是\(10^9\)级别. 然后我们开搞. 首先,假设一个合法的\(x\)可以表示为\(x=\prod p_i^{q_i}\),那么令\(d=gcd(q_1,q_2...q_k)\) 假设\(d>1\),显然我们不需要单独考虑,因为它可以继续化简,我们找到最简的那个数然后去一次性处理. 那么此时所有情况都变成了\(d=1\). 此时再分两种情况讨论,因为我们现在实…
参考:https://www.cnblogs.com/iwtwiioi/p/4986316.html 注意区间长度为1e5级别. 则假设n个数不全相同,那么他们的gcd小于最大数-最小数,证明:则gcdk2−gcdk1=gcd(k2−k1)>d 所以特判一下全相等的情况就行利润 然后把区间除以k,这样问题就转成了找gcd==1,设f[i]为gcd为i的方案数.从大到小枚举约数,快速幂计算选取选取情况,然后减去约束的倍数的f(容斥) #include<iostream> #include&…
题目传送门(内部题16) 输入格式 第一行两个整数$n$和$m$,代表网格的大小.接下来$n$行每行一个长度为$m$的字符串,每个字符若为$W$代表这个格子必须为阳,若为$B$代表必须为阴,若为$?$代表可以运功调整. 输出格式 一行一个整数,代表阴阳平衡的方案数模$1e9+7$的余数. 样例 样例输入1: 3 3B?W?B???? 样例输出1: 样例输入2: 3 3????????? 样例输出2: 数据范围与提示 对于$30\%$的数据,$n\leqslant 4,m\leqslant 4$.…
题意,给定n,k,求有多少排列是的 | p[i]-i |=1 的数量为k. Solution 直接dp会有很大的后效性. 所以我们考虑固定k个数字使得它们是合法的,所以我们设dp[i][j][0/1][0/1]表示前i个数,填了j个数,当前位置有没有被选,下一位有没有被选,这样做的话,转移会比较简单. 那么除去这j个数,剩下的数随便填,乘上全排列就好了. 但这样会多算. 然后这种问题有一个容斥模型,直接套上就好了. #include<iostream> #include<cstdio&g…
给定两个数组a[n]与b[n](数全不相等),两两配对,求“a比b大”的数对比“b比a大”的数对个数多k的配对方案数. 据说做了这题就没什么题好害怕的了,但感觉实际上这是一个套路题,只是很难想到. 首先显然“a比b大”的个数是确定的,问题转化成求“a比b大”的数对个数为m的方案数. 不好算考虑容斥,总结下容斥的一些套路.(From ATP's Blog) 1.全部-至少一个+至少两个-…=一个也没有的 2.所有的-一个也没有的=至少有一个的 3.至少有k个的-C(k+1,k)* 至少有k+1个的…
现场过的第四多的题..当时没什么想法,回来学了下容斥,又听学长讲了一讲,终于把它过了 题目大意:给定n个数,求全部互质或者全部不互质的三元组的个数 先说一下同色三角形模型 n个点 每两个点连一条边(可以为红色或者黑色),求形成的三条边颜色相同的三角形的个数 反面考虑这个问题,只需要c(n,3)减去不同色的三角形个数即可 对于每一个点,所形成的不同色三角形即为 红色边的数量*黑色边的数量,所以可以O(n)地算出不同色三角形的个数(注意总数要除以2) 然后用c(n,3)减一下即可 对于这个题,如果把…
传送门:Gift 题意:由n(n<=1e9)个珍珠构成的项链,珍珠包含幸运数字(有且仅由4或7组成),取区间[L,R]内的数字,相邻的数字不能相同,且旋转得到的相同的数列为一种,为最终能构成多少种项链. 分析:这是我做过的最为综合的一道题目(太渣了),首先数位dp筛选出区间[L,R]内的幸运数字总数,dp[pos]表示非限制条件下还有pos位含有的幸运数字个数,然后记忆化搜索一下,随便乱搞的(直接dfs不知会不会超时,本人做法900+ms险过,应该直接dfs会超时),再不考虑旋转相同的情况,可以…
题目链接 Problem Description Galen Marek, codenamed Starkiller, was a male Human apprentice of the Sith Lord Darth Vader. A powerful Force-user who lived during the era of the Galactic Empire, Marek originated from the Wookiee home planet of Kashyyyk as…
题目链接: http://172.16.0.132/senior/#contest/show/2523/0 题目: 题解:(部分内容来自https://blog.csdn.net/gmh77/article/details/82947340) 首先我们容斥一下,设calc(l,r)为i∈[1,l],j∈[q,r]的方程的解的个数,显然答案等于calc(r2,r1)-calc(l1-1,r2)-calc(r1,l2-1)+calc(l1-1,l2-1) 考虑如何计算calc(l,r) 对于l和r,…
题目传送门(内部题74) 输入格式 输入文件$link.in$ 第一行三个整数$n,m,k$,之间用空格隔开,$n,m$表示地图行数和列数,$k$表示每个方块周围相邻的位置(至多有$4$个,至少有$2$个,在地图的角上就是$2$个,地图的边上就是$3$个,地图内部就是$4$个)中,最多有$k$个位置是空地. 接下来$n$行,每行$m$个自然数,之间用空格隔开,描述地图. 输出格式 输出文件$link.out$ 一行一个整数表示这一步有多少种选法. 样例 样例输入1: 1 3 11 1 1 样例输…