HDU 4059 容斥初步练习】的更多相关文章

#include <iostream> #include <cstring> #include <cstdio> #include <algorithm> #define LL long long using namespace std; ; ; LL Factor[],cnt,n,m,tot,Rev,Kase,Prime[Maxn]; bool vis[Maxn]; inline LL Quick_Pow(LL x,LL y) { LL Ret=; whi…
问a,b区间内与n互质个数,a,b<=1e15,n<=1e9 n才1e9考虑分解对因子的组合进行容斥,因为19个最小的不同素数乘积即已大于LL了,枚举状态复杂度不会很高.然后差分就好了. /** @Date : 2017-09-28 16:52:30 * @FileName: HDU 4135 容斥.cpp * @Platform: Windows * @Author : Lweleth (SoungEarlf@gmail.com) * @Link : https://github.com/…
$n,m <= 1e5$ ,$i<=n$,$j<=m$,求$(i⊥j)$对数 /** @Date : 2017-09-26 23:01:05 * @FileName: HDU 2841 容斥 或 反演.cpp * @Platform: Windows * @Author : Lweleth (SoungEarlf@gmail.com) * @Link : https://github.com/ * @Version : $Id$ */ #include <bits/stdc++.h…
又是求gcd=k的题,稍微有点不同的是,(i,j)有偏序关系,直接分块好像会出现问题,还好数据规模很小,直接暴力求就行了. /** @Date : 2017-09-15 18:21:35 * @FileName: HDU 1695 容斥 或 莫比乌斯反演.cpp * @Platform: Windows * @Author : Lweleth (SoungEarlf@gmail.com) * @Link : https://github.com/ * @Version : $Id$ */ #in…
http://acm.hdu.edu.cn/showproblem.php?pid=1220 Cube Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 2260    Accepted Submission(s): 1819 Problem Description Cowl is good at solving math problems…
Code: #include<cstdio> #include<cstring> #include<cmath> #include<iostream> using namespace std; const int maxn=100000+233; typedef long long ll; int v[maxn],vis[maxn]; int m[maxn]; int num; //质因子个数 ll ans=0; ll A,B; ll gcd(ll a,ll…
Code: #include<cstdio> using namespace std; typedef long long ll; const int R=13; ll a[R]; ll n,ans; int m,cnt=0; ll gcd(ll a,ll b){return b==0?a:gcd(b,a%b);} void dfs(int cur,ll lcm,int id){ if(cur>cnt)return; lcm=a[cur]/gcd(a[cur],lcm)*lcm; if(…
题目链接 求出ai^4+a2^4+......an^4的值, ai为小于n并与n互质的数. 用容斥做, 先求出1^4+2^4+n^4的和的通项公式, 显然是一个5次方程, 然后6个方程6个未知数, 我gauss消元解的(雾 然后筛出n所以的因子, 容斥就好. 容斥的时候, 每一个数的贡献是x^4 * getSum(x), getSum就是上面求出的通项公式. #include <iostream> #include <vector> #include <cstdio>…
The Boss on Mars Problem's Link Mean: 给定一个整数n,求1~n中所有与n互质的数的四次方的和.(1<=n<=1e8) analyse: 看似简单,倘若自己手动推公式的话,还是需要一定的数学基础. 总的思路:先求出sum1=(1^4)+(2^4)+...(n^4),再求出sum2=(1~n中与n不互质的数的四次方的和),answer=sum1-sum2. 如何求sum1呢? 有两种方法: 1.数列差分.由于A={Sn}={a1^4+a2^4+...an^4}…
pro: T次询问,每次给出N(N<1e8),求所有Σi^4 (i<=N,且gcd(i,N)==1) ; sol:  因为N比较小,我们可以求出素因子,然后容斥.  主要问题就是求1到P的4次幂和.  我们知道K次幂和是一个K+1次多项式. 这里有公式Pre=P*(P+1)*(2P+1)*(3P^2+3P-1)/30; 在不知道公式的情况下,我们可以用拉格朗日差值法求. 1,下面给出DFS容斥的代码 . #include<bits/stdc++.h> #define ll long…