Python基于pandas的数据处理(二)】的更多相关文章

14 抽样 df.sample(10, replace = True) df.sample(3) df.sample(frac = 0.5) # 按比例抽样 df.sample(frac = 10, replace = True,weights = np.random.randint(1,10,6)) # 对样本加权 df.sample(3, axis = 1) # 变量抽样 15 join(即 merge) pd.merge(df.sample(4), df.sample(4), how =…
import pandas as pd, numpy as np dates = pd.date_range(', periods=6) df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD')) 1 mutate + ifelse df['E'] = np.where(df['D'] >= 0, '>=0', '<0') df['F'] = np.random.randint(0, 2, 6) d…
如何从基于pandas中某些列的值的DataFrame中选择行?在SQL中我将使用: select * from table where colume_name = some_value. 我试图看看熊猫文档,但没有立即找到答案.   要选择列值等于标量some​​_value的行,请使用==: df.loc[df['column_name'] == some_value] 要选择其列值在可迭代值some_values中的行,请使用isin: df.loc[df['column_name'].i…
pandas数据处理 关注公众号"轻松学编程"了解更多. 以下命令都是在浏览器中输入. cmd命令窗口输入:jupyter notebook 打开浏览器输入网址http://localhost:8888/ ##导入模块 import numpy as np import pandas as pd from pandas import Series,DataFrame 1.删除重复元素 使用duplicated()函数检测重复的行,返回元素为布尔类型的Series对象,每个元素对应一行,…
Python matplotlib模块,是扩展的MATLAB的一个绘图工具库,它可以绘制各种图形 建议安装 Anaconda后使用 ,集成了很多第三库,基本满足大家的需求,下载地址,对应选择python 2.7 或是 3.5 的就可以了: https://www.continuum.io/downloads#windows 脚本默认执行方式:              1.获取当前文件夹下的1.log文件              2.将数据格式化为矩阵              3.以矩阵的列…
基于pandas python的美团某商家的评论销售数据分析 第一篇 数据初步的统计 本文是该可视化系列的第二篇 第三篇 数据中的评论数据用于自然语言处理 导入相关库 from pyecharts import Bar,Pie import pandas as pd import numpy as np import matplotlib.pyplot as plt import time 数据清洗与简单统计 评论数据,其中包括一下几个字段 是否匿名,均价,评价(以去掉,后续会做一些关于这些评论…
在这个用 Python 和 Pandas 实现数据分析的教程中, 我们将明确一些 Pandas 基础知识. 加载到 Pandas Dataframe 的数据形式可以很多, 但是通常需要能形成行和列的数据集. 所以可以是如下的 dictionary 的形式: web_stats = {'Day':[1,2,3,4,5,6], 'Visitors':[43,34,65,56,29,76], 'Bounce Rate':[65,67,78,65,45,52]} 我们可以通过如下方式把这个 dictio…
基于 Python 和 Pandas 的数据分析(1) Pandas 是 Python 的一个模块(module), 我们将用 Python 完成接下来的数据分析的学习. Pandas 模块是一个高性能,高效率和高水平的数据分析库. 从本质上讲,它非常像操作电子表格的无头版本,如Excel. 我们所使用的大部分的数据集都可以被转换成 dataframes(数据框架). 你可能对这个术语比较熟悉了, 它被广泛地用于很多语言. 但是如果你不熟悉, 可以看下我的解释: 一个 dataframe 就很像…
Python:pandas(一) 这一章翻译总结自:pandas官方文档--General functions 空值:pd.NaT.np.nan //判断是否为空 if a is np.nan: ... 数据操作 melt 将DataFrame从一个宽类型转化为长类型:固定某一列,看该列变量其他列的值 pivot 用某些列将DataFrame变形(不是常见的大小变形) cut 切割一个一维数据为离散的区间 qcut 与cut相似,区别在于cut是等长切割,qcut是等元素数切割 merge 连接…
这一节我想对使用 Python 和 Pandas 的数据分析做一些扩展. 假设我们是亿万富翁, 我们会想要多元化地进行投资, 比如股票, 分红, 金融市场等, 那么现在我们要聚焦房地产市场, 做一些这方面的调研. 首先, 决定房价的因素有哪些呢? 经济, 利率和人口特征.这些是影响放假的主要因素. 当然还有很多细节, 比如房子的排水系统, 屋顶, 地板等等. 但是, 首先我们还是从宏观的角度来做个大体的分析. 第一步, 就是要收集数据. Quandl 仍然是一个很好的起点, 但是这次我们要自己手…