pandas 的常用方法】的更多相关文章

pandas的常用方法: 1.数据输入 2.数据查看 3.数据清洗 4.数据处理 5.数据提取 6.数据筛选 7.数据汇总 8.数据统计 9.数据输出 详情见: https://blog.csdn.net/yiyele/article/details/80605909 以及更加详细的 pandas 教程: https://www.yiibai.com/pandas…
目录 1. 常用方法 pandas.Series 2. pandas.DataFrame ([data],[index])   根据行建立数据 3. pandas.DataFrame ({dic}) 根据列建立数据 4. pandas.DataFrame([list])根据数据建立列数据 5. loc / iloc 数据筛选 6. 多级行索引 7. 使用 pandas.MultiIndex 显式创建多级行索引 8. 多级行索引的升维及降维 9. 在DataFrame 中添加列 insert 10…
机器学习离不开数据,数据分析离不开pandas.昨天感受了一下,真的方便.按照一般的使用过程,将pandas的常用方法说明一下. 首先,我们拿到一个excel表,我们将之另存为csv文件.因为文件是实验室的资源,我就不分享了. 首先是文件读取 def load_csv(filename): data=pd.read_csv(filename) data = data.drop(data.columns[39:], axis=1) return data 我们调用read_csv文件可以直接读取c…
数据处理过程的数据类型 当利用pandas进行数据处理的时候,经常会遇到数据类型的问题,当拿到数据的时候,首先需要确定拿到的是正确类型的数据,一般通过数据类型的转化,这篇文章就介绍pandas里面的数据类型(data types也就是常用的dtyps),以及pandas与numpy之间的数据对应关系. 主要介绍object,int64,float64,datetime64,bool等几种类型,category与timedelta两种类型会单独的在其他文章中进行介绍.当然本文中也会涉及简单的介绍.…
一.实验文档准备 1.安装 tushare pip install tushare 2.启动ipython C:\Users\Administrator>ipython Python 3.7.0 (default, Jun 28 2018, 08:04:48) [MSC v.1912 64 bit (AMD64)] Type 'copyright', 'credits' or 'license' for more information IPython 7.0.1 -- An enhanced…
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 大家好我是费老师,一些比较熟悉pandas的读者朋友应该经常会使用query().eval().pipe().assign()等pandas的常用方法(相关知识详见我的pandas专题教程https://www.cnblogs.com/feffery/tag/pandas/),书写可读性很高的链式数据分析处理代码,从而更加丝滑流畅地组织代码逻辑.…
数据处理很多需要用到pandas,有两个基本类型:Series表示一维数据,DataFrame表示多维.以下是一些常用方法的整理: pandas.Series 创建 Series pandas.Series( data, index, dtype, copy) name value data 数据采取各种形式,如:ndarray,list,dict, constants(常量) index 索引值必须是唯一的和散列的,与数据的长度相同. 默认np.arange(n)如果没有索引被传递. dtyp…
# -*- coding: utf-8 -*-import pandas as pd"""(1)利用pandas读取csv文件"""def readcsv(path): df=pd.read_csv(path,sep=',') print("1 打印索引:",df.index) print("2 前五行",df[0:5]) print("3 只选择第五行",df.loc[5]) prin…
1. 导库 import pandas as pd 2. 读取excel文件 这里要注意的就是第二个参数header如果不设置,pandas会默认把excel的第一行当作columns,header=None的时候pandas会为我们新生成从0开始的数字做columns, 我们可以通过header=1把第二行当作columns;第三个参数index_col是表示用哪一列做index的,如果不设置的话,pandas会默认生成一串从0开始的数字当作index,我们可以设置指定列来当作index,例如…
Lambda 函数实现 简单的说,lambda 就是一个函数,但是这个函数没有名字,所以我们介绍一下这个函数的调用形式,参数与返回值的实现. lambda 的格式如下: lambda [arg1 [, agr2,.....argn]] : expression lambda x : expression 那么这个函数怎么使用了,它常常不是单独使用,单独的使用的时候可以较为简单,实现的功能过于简单.所以通常被使用的情况是,某个函数的参数是一个函数,那么这个参数就可以使用 lambda来实现. >>…
from pandas import DataFrame import numpy as np import pandas as pd t={ , , np.nan, , np.nan, ], "city": ["BeiJing", "ShangHai", "GuangZhou", "ShenZhen", 'BeiJing', "ShangHai"], "sex":…
关键缩写和包导入 在这个速查手册中,我们使用如下缩写: df:任意的Pandas DataFrame对象 同时我们需要做如下的引入: import pandas as pd 导入数据 pd.read_csv(filename) 从CSV文件导入数据 pd.read_table(filename) 从限定分隔符的文本文件导入数据 pd.read_excel(filename) 从Excel文件导入数据 pd.read_sql(query, connection_object) 从SQL表/库导入数…
Pandas库专为数据分析而设计,它是使Python成为强大而高效的数据分析环境的重要因素. 一.Pandas数据结构 1.import pandas as pd import numpy as np import matplotlib.pyplot as plt 2.S1=pd.Series([‘a’,’b’,’c’]) series是一组数据与一组索引(行索引)组成的数据结构 3.S1=pd.Series([‘a’,’b’,’c’],index=(1,3,4)) 指定索引 4.S1=pd.S…
In [49]: frame2 Out[49]: year state pop debt one 2000 Ohio 1.5 NaN two 2001 Ohio 1.7 NaN three 2002 Ohio 3.6 NaN four 2001 Nevada 2.4 NaN five 2002 Nevada 2.9 NaN six 2003 Nevada 3.2 NaN取一列的值可以frame2.state或者frame2['state']frame2['debt'] = 16.5可以填充一列删…
pandas:数据分析 pandas是一个强大的Python数据分析的工具包.pandas是基于NumPy构建的. pandas的主要功能具备对其功能的数据结构DataFrame.Series集成时间序列功能提供丰富的数学运算和操作灵活处理缺失数据 安装方法:pip install pandas引用方法:import pandas as pd pandas:Series Series是一种类似于一位数组的对象,由一组数据和一组与之相关的数据标签(索引)组成. 创建方式: pd.Series([4…
pandas and numpy notebook        最近工作交接,整理电脑资料时看到了之前的基于Jupyter学习数据分析相关模块学习笔记.想着拿出来分享一下,可是Jupyter导出来html文件,博客园不支持js注入,贴图效果实在太差劲儿.所以只贴了内容,要是有需要文件原版(pdf.md.html等)可以在评论区说一下.        本系列是数据分析相关的,打算做一个持续连载,后边便于自己系统查看和回顾. 另外,本片博客在github上有PDF版本,并且格式也很清爽,请转htt…
pandas:数据分析 pandas是一个强大的Python数据分析的工具包. pandas是基于NumPy构建的. pandas的主要功能 具备对其功能的数据结构DataFrame.Series 集成时间序列功能 提供丰富的数学运算和操作 灵活处理缺失数据 安装方法:pip install pandas 引用方法:import pandas as pd(习惯给pandas起别名) Series Series是一种类似于一位数组的对象,由一组数据和一组与之相关的数据标签(索引)组成. 创建方式…
目录 Pandas之Series Pandas之DataFrame 一.pandas简单介绍 1.pandas是一个强大的Python数据分析的工具包.2.pandas是基于NumPy构建的. 3.pandas的主要功能 具备对其功能的数据结构DataFrame.Series 集成时间序列功能 提供丰富的数学运算和操作 灵活处理缺失数据 4.安装方法:pip install pandas5.引用方法:import pandas as pd 二.Series Series是一种类似于一位数组的对象…
numpy: import numpy as np np.array([1,2,3]) 创建数组 np.arange(10).reshape(2,5) 类似于range(起始,终止,步长),可以加reshape(2,5)定义形状.必须是相乘等于前面的size np.linsapace(1,10,10) 参数为:起始,终止,平分多少个 zeros((2,4)) 根据指定形状和dtype创建全0数组 ones((2,4)) 根据指定形状和dtype创建全1数组 empty((2,4)) 根据指定形状…
1.数值计算和统计基础 常用数学.统计方法 数值计算和统计基础 基本参数:axis.skipna df.mean(axis=1,skipna=False)  -->> axis=1是按行来进行统计: 默认按列统计(axis默认为0,可不写): skipna=False是不忽略,显示NaN,默认为True,即忽略NaN. >>> import numpy as np >>> import pandas as pd >>> df = pd.Da…
Pivot allows you to transform or reshape data.Pivot 可以帮助我们改变数据的格式, 下面两个例子可以作为参考: 下面来看下具体实现, 首先引入一个 csv 文件(已上传) df = pd.read_csv('/Users/rachel/Sites/pandas/py/pandas/10_pivot/weather.csv') 输出:格式转换, 设置 'date' 为索引列, 也就让'date' 做每一行的输出依据, 然后设置'city' 为每一列…
以各个城市的天气为例, 先准备下面的数据: 印度天气的相关信息: import pandas as pd india_weather = pd.DataFrame({ 'city': ['mumbai', 'delhi', 'banglore'], 'temperature': [32, 34, 30], 'humidity': [80, 60, 72] }) india_weather 美国天气的相关信息: us_weather = pd.DataFrame({ 'city': ['newyo…
本来打算学习pandas模块,并写一个博客记录一下自己的学习,但是不知道怎么了,最近好像有点急功近利,就想把别人的东西复制过来,当心沉下来,自己自觉地将原本写满的pandas学习笔记删除了,这次打算写上自己的学习记录,这里送给自己一句话,同时送给看这篇博客的人,共勉 当你迷茫的时候,当你饱受煎熬的时候,请停下来,想想自己学习的初衷,想想自己写博客的初衷,爱你所爱,行你所行,听从你心,无问西东. 好了,正文开始. pandas是做数据分析非常重要的一个模块,它使得数据分析的工作变得更快更简单.由于…
转http://www.datadependence.com/2016/05/scientific-python-pandas/ 一. Pandas简介 1.Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具.pandas提供了大量能使我们快速便捷地处理数据的函数和方法.你很快就会发现,它是使Python成为强大而高效的…
python之pandas简单介绍及使用(一) 一. Pandas简介1.Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具.pandas提供了大量能使我们快速便捷地处理数据的函数和方法.你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一.2.Pandas 是python的一个数据分析包,最初由…
一.pandas库简介 pandas是一个专门用于数据分析的开源Python库,目前很多使用Python分析数据的专业人员都将pandas作为基础工具来使用.pandas是以Numpy作为基础来设计开发的,Numpy是大量Python数据科学计算库的基础,pandas以此为基础,在计算方面具有很高的性能.pandas有两大数据结构,这是pandas的核心,数据分析的所有任务都离开它们,分别是Series和DataFrame.   二.pandas库的安装 paandas安装较为简单,如果使用An…
Pandas 讲解 Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的. Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具. pandas提供了大量能使我们快速便捷地处理数据的函数和方法.你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一. Series:一维数组,与Numpy中的一维array类似. 二者与Python基本的数据结构List也…
pandas 是一个基于 Numpy 构建, 强大的数据分析工具包 主要功能 独特的数据结构 DataFrame, Series 集成时间序列功能 提供丰富的数学运算操作 灵活处理缺失数据 Series 一维数组 Series 是一种类似于一维数组的对象, 由一组数据和一组与之相关的数据标签(索引)组成 创建方式 pd.Series([4, 7 ,5, -3]) pd.Series([4, 7 ,5, -3], index=['a', 'b', 'c', 'd']) pd.Series({'a'…
沉淀,再出发:python中的pandas包 一.前言 python中有很多的包,正是因为这些包工具才使得python能够如此强大,无论是在数据处理还是在web开发,python都发挥着重要的作用,下面我们看一下python用于数据处理的pandas包以及相应的用法. 二.pandas的使用 2.1.pandas简介 Numpy.Matplotlib,Pandas是Python科学计算的支柱. NumPy是Python语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供…
操作Series和DataFrame中的数据的常用方法: 导入python库: import numpy as np import pandas as pd 测试的数据结构: Series: >>> obj = pd.Series([4.5, 7.2, -5.3, 3.6], index=['d', 'b', 'a', 'c']) >>> obj d 4.5 b 7.2 a -5.3 c 3.6 dtype: float64 DataFrame: >>>…