spark SQL (一)初识 ,简介】的更多相关文章

随着Spark1.2的发布,Spark SQL开始正式支持外部数据源.这使得Spark SQL支持了更多的类型数据源,如json, parquet, avro, csv格式.只要我们愿意,我们可以开发出任意的外部数据源来连接到Spark SQL. 示例: 存储json数据. CREATE TEMPORARY TABLE jsonTable USING org.apache.spark.sql.json OPTIONS ( path '/path/to/data.json' ) 详细示例:1. D…
http://blog.csdn.net/oopsoom/article/details/42061077 一.Spark SQL External DataSource简介 随着Spark1.2的发布,Spark SQL开始正式支持外部数据源.Spark SQL开放了一系列接入外部数据源的接口,来让开发者可以实现. 这使得Spark SQL支持了更多的类型数据源,如json, parquet, avro, csv格式.只要我们愿意,我们可以开发出任意的外部数据源来连接到Spark SQL.之前…
一, 简介 Spark SQL是用于结构化数据处理的Spark模块.与基本的Spark RDD API不同,Spark SQL提供的接口为Spark提供了关于数据结构和正在执行的计算的更多信息.在内部,Spark SQL使用这些额外的信息来执行额外的优化.有几种与Spark SQL进行交互的方式,包括SQL和Dataset API.在计算结果时,使用相同的执行引擎,而不管使用哪种API /语言表示计算.这种统一意味着开发人员可以轻松地在不同的API之间来回切换,基于这些API提供了表达给定转换的…
Spark SQL提供在大数据上的SQL查询功能,类似于Shark在整个生态系统的角色,它们可以统称为SQL on Spark. 之前,Shark的查询编译和优化器依赖于Hive,使得Shark不得不维护一套Hive分支,而Spark SQL使用Catalyst做查询解析和优化器,并在底层使用Spark作为执行引擎实现SQL的Operator. 用户可以在Spark上直接书写SQL,相当于为Spark扩充了一套SQL算子,这无疑更加丰富了Spark的算子和功能,同时Spark SQL不断兼容不同…
AMPLab 将大数据分析负载分为三大类型:批量数据处理.交互式查询.实时流处理.而其中很重要的一环便是交互式查询. 大数据分析栈中需要满足用户 ad-hoc.reporting. iterative 等类型的查询需求,也需要提供 SQL 接口来兼容原有数据库用户的使用习惯,同时也需要 SQL 能够进行关系模式的重组.完成这些重要的 SQL 任务的便是 Spark SQL 和 Shark 这两个开源分布式大数据查询引擎,它们可以理解为轻量级 Hive SQL 在 Spark 上的实现,业界将该类…
内存计算平台spark在今年6月份的时候正式发布了spark2.0,相比上一版本的spark1.6版本,在内存优化,数据组织,流计算等方面都做出了较大的改变,同时更加注重基于DataFrame数据组织的MLlib,更加注重机器学习整个过程的管道化. 当然,作为使用者,特别是需要运用到线上的系统,大部分厂家还是会继续选择已经稳定的spark1.6版本,并且在spark2.0逐渐成熟之后才会开始考虑系统组件的升级.作为开发者,还是有必要先行一步,去了解spark2.0的一些特性和使用,及思考/借鉴一…
/** Spark SQL源代码分析系列文章*/ 前几篇文章介绍了Spark SQL的Catalyst的核心执行流程.SqlParser,和Analyzer,本来打算直接写Optimizer的,可是发现忘记介绍TreeNode这个Catalyst的核心概念,介绍这个能够更好的理解Optimizer是怎样对Analyzed Logical Plan进行优化的生成Optimized Logical Plan,本文就将TreeNode基本架构进行解释. 一.TreeNode类型 TreeNode Li…
一.简介 Spark SQL 提供了以下三大功能. (1) Spark SQL 可以从各种结构化数据源(例如 JSON.Hive.Parquet 等)中读取数据. (2) Spark SQL 不仅支持在 Spark 程序内使用 SQL 语句进行数据查询,也支持从类似商业智能软件 Tableau 这样的外部工具中通过标准数据库连接器(JDBC/ODBC)连接 SparkSQL 进行查询. (3) 当在 Spark 程序内使用 Spark SQL 时,Spark SQL 支持 SQL 与常规的 Py…
Spark SQL是Apache Spark最广泛使用的一个组件,它提供了非常友好的接口来分布式处理结构化数据,在很多应用领域都有成功的生产实践,但是在超大规模集群和数据集上,Spark SQL仍然遇到不少易用性和可扩展性的挑战.为了应对这些挑战,英特尔大数据技术团队和百度大数据基础架构部工程师在Spark 社区版本的基础上,改进并实现了自适应执行引擎.本文首先讨论Spark SQL在大规模数据集上遇到的挑战,然后介绍自适应执行的背景和基本架构,以及自适应执行如何应对Spark SQL这些问题,…
0. 说明 Spark SQL 的配置基于 Spark 集群搭建  && Hive 的安装&配置 1. 简介 Spark SQL 是构建在 Spark Core 模块之上的四大模块之一,提供 DataFrame 等丰富 API,可以采用传统的 SQL 语句进行数学计算.运行期间,会通过 Spark 查询优化器翻译产物理执行计划,并行计算后输出结果.底层计算原理仍然采用 RDD 计算实现. 2. Spark 与 Hive 集成 2.1 在 Spark 配置目录下创建指向 [hive-…