F1分数】的更多相关文章

F1 分数会同时考虑精确率和召回率,以便计算新的分数. 可将 F1 分数理解为精确率和召回率的加权平均值,其中 F1 分数的最佳值为 1.最差值为 0: F1 = 2 * (精确率 * 召回率) / (精确率 + 召回率) 帮助文档 http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#sklearn.metrics.f1_score…
分类的常用指标有: accuracy:准确率 recall:召回率 precison:精确率 f1score:f1分数,是recall和precison的调和均值. 准确率什么情况下失效? 在正负样本不均衡的情况下,accuracy这个指标有很大的缺陷. 如:正样本990个,负样本10个. 这样好像也没有什么用处哦? 原因是关注正样本还是负样本. 默认是关注正样本,而此时的正样本太多,就算混入几个副样本也无伤大雅. 但大部分情况下是那10个才叫"正样本",比如异常检测里,990个正常,…
11. 机器学习系统的设计 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 11.3 偏斜类的误差度量 Error Metrics for Skewed Classes 偏斜类 Skewed Classes 类偏斜情况表现为训练集中有非常多的同一种类的实例,只有很少或没有其他类的实例 示例 例如我们希望用算法来预测癌症是否是恶性的,在我们的训练集中,只有0.5%的实例是恶性肿瘤.假设我们编写一个非学习而来的算法,在所有情…
19.1  总结和致谢 欢迎来到<机器学习>课的最后一段视频.我们已经一起学习很长一段时间了.在最后视频中,我想快速地回顾一下这门课的主要内容,然后简单说几句想说的话. 作为这门课的结束时间,那么我们学到了些什么呢?在这门课中,我们花了大量的时间介绍了诸如线性回归.逻辑回归.神经网络.支持向量机等等一些监督学习算法,这类算法 具有带标签的数据和样本,比如 x(i).y(i). 然后我们也花了很多时间介绍无监督学习.例如 K-均值聚类.用于降维的主成分分析, 以及当你只有一系列无标签数据 x(i…
Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正交流,谢谢.…
机器学习策略 ML strategy 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.1 什么是ML策略 机器学习策略简介 情景模拟 假设你正在训练一个分类器,你的系统已经达到了90%准确率,但是对于你的应用程序来说还不够好,此时你有很多的想法去继续改善你的系统 收集更多训练数据 训练集的多样性不够,收集更多的具有多样性的实验数据和更多样化的反例集. 使用梯度下降法训练更长的时间 尝试一个不同的优化算法,例如Adam优化算法. 尝试更大的神经网络或者更小的神经网络 尝试dropout…
------------------------------------------------------------------------------------------------------------------------------------------------------------------- 译文 摘要:在深度卷积网络(ConvNet)的帮助下,边缘检测已经取得了重大进展.基于ConvNet的边缘检测器在标准基准测试中达到了人类水平.我们提供了对于这些检测器输出…
"知物由学"是网易云易盾打造的一个品牌栏目,词语出自汉·王充<论衡·实知>.人,能力有高下之分,学习才知道事物的道理,而后才有智慧,不去求问就不会知道."知物由学"希望通过一篇篇技术干货.趋势解读.人物思考和沉淀给你带来收获的同时,也希望打开你的眼界,成就不一样的你.当然,如果你有不错的认知或分享,也欢迎通过邮件(zhangyong02@corp.netease.com)投稿. 以下是正文: 本文作者:ArturBaćmaga,YND的AI专家. 想象一…
http://blog.csdn.net/pipisorry/article/details/52250760 模型评估Model evaluation: quantifying the quality of predictions 3 different approaches to evaluate the quality of predictions of a model: Estimator score method: Estimators have a score method prov…
基于神经模型的半监督词义消歧 Dayu Yuan  Julian Richardson  Ryan Doherty  Colin Evans  Eric Altendorf Google, Mountain View CA, USA 摘要 确定文本中词语的意图 - 词义消歧(WSD) - 是自然语言处理中长期存在的问题. 最近,研究人员使用从神经网络语言模型中提取的单词向量作为WSD算法的特征,显示了有希望的结果. 但是,文本中每个单词的单词向量的简单平均或串联会丢失文本的顺序和句法信息. 在本…
深入理解LSTM词义消歧 Minh Le,Marten Postma,Jacopo Urbani和Piek Vossen 阿姆斯特丹自由大学语言,文学和传播系 阿姆斯特丹自由大学计算机科学系 摘要 基于LSTM的语言模型已经在Word Sense Disambiguation(WSD)中显示出有效性. 尤其是Yuan等人提出的技术(2016)在几个基准测试中返回了最先进的性能,但是没有发布训练数据和源代码.本文介绍了仅使用公开可用的数据集进行复制研究和分析该技术的结果(Giga Word,Sem…
轉自 https://blog.csdn.net/sinat_28576553/article/details/80258619 四个基本概念TP.True Positive   真阳性:预测为正,实际也为正 FP.False Positive  假阳性:预测为正,实际为负 FN.False Negative 假阴性:预测与负.实际为正 TN.True Negative 真阴性:预测为负.实际也为负. [一致判真假,预测判阴阳.] 以分类问题为例: 首先看真阳性:真阳性的定义是“预测为正,实际也…
1.什么是性能度量? 我们都知道机器学习要建模,但是对于模型性能的好坏(即模型的泛化能力),我们并不知道是怎样的,很可能这个模型就是一个差的模型,泛化能力弱,对测试集不能很好的预测或分类.那么如何知道这个模型是好是坏呢?我们必须有个评判的标准.为了了解模型的泛化能力,我们需要用某个指标来衡量,这就是性能度量的意义.有了一个指标,我们就可以对比不同模型了,从而知道哪个模型相对好,那个模型相对差,并通过这个指标来进一步调参逐步优化我们的模型. 当然,对于分类和回归两类监督学习,分别有各自的评判标准.…
随着机器学习(ML)成为软件行业的主流,重要的是要了解它的工作原理,并将其置于开发栈中.了解如何为您的应用程序构建ML服务,您可以确定您的ML应用程序中的机会,实施ML,并与您的团队的ML专业人士清楚沟通. 在整个系列中,我们将构建一个基于信用记录预测贷款审批的ML服务,创建一个Web服务,并从各种平台使用Web服务.通过这个过程,我们将了解有关构建自定义ML服务的ML工具Microsoft Azure ML Studio.对于系列的第一部分,我们将重点介绍如何构建培训实验,了解Azure ML…
欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章 python信用评分卡建模视频系列教程(附代码)  博主录制 https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share Minimization of risk and maximizatio…
本章主要讲关于分类的一些机器学习知识点.我会按照以下关键点来总结自己的学习心得:(本文源码在文末,请自行获取) 什么是MNIST数据集 二分类 二分类的性能评估与权衡 从二元分类到多类别分类 错误分析 多标签分类.多输出分类   什么是MNIST数据集 MNIST数据集是一组由美国高中生和人口调查局员工手写的70,000个数字图片数据集.官方链接为:http://yann.lecun.com/exdb/mnist/ 这组数据集X标签是28*28大小的像素强度数值,y标签是一个该图像对应的一个真实…
评估分类器性能的度量,像混淆矩阵.ROC.AUC等 内容概要¶ 模型评估的目的及一般评估流程 分类准确率的用处及其限制 混淆矩阵(confusion matrix)是如何表示一个分类器的性能 混淆矩阵中的度量是如何计算的 通过改变分类阈值来调整分类器性能 ROC曲线的用处 曲线下面积(Area Under the Curve, AUC)与分类准确率的不同   1. 回顾¶ 模型评估可以用于在不同的模型类型.调节参数.特征组合中选择适合的模型,所以我们需要一个模型评估的流程来估计训练得到的模型对于…
https://blog.csdn.net/qq_34739497/article/details/80508262 Yellowbrick 是一套名为「Visualizers」的视觉诊断工具,它扩展了 Scikit-Learn API 以允许我们监督模型的选择过程.简而言之,Yellowbrick 将 Scikit-Learn 与 Matplotlib 结合在一起,并以传统 Scikit-Learn 的方式对模型进行可视化. 可视化器 可视化器(Visualizers)是一种从数据中学习的估计…
19.1  总结和致谢 欢迎来到<机器学习>课的最后一段视频.我们已经一起学习很长一段时间了.在最后视频中,我想快速地回顾一下这门课的主要内容,然后简单说几句想说的话. 作为这门课的结束时间,那么我们学到了些什么呢?在这门课中,我们花了大量的时间介绍了诸如线性回归.逻辑回归.神经网络.支持向量机等等一些监督学习算法,这类算法具有带标签的数据和样本,比如 x(i).y(i). 然后我们也花了很多时间介绍无监督学习.例如 K-均值聚类.用于降维的主成分分析(PCA), 以及当你只有一系列无标签数据…
十七.大规模机器学习(Large Scale Machine Learning) 17.1 大型数据集的学习 17.2 随机梯度下降法 17.3 小批量梯度下降 17.4 随机梯度下降收敛 17.5 在线学习 17.6 映射化简和数据并行 十八.应用实例:图片文字识别(Application Example: Photo OCR) 18.1 问题描述和流程图 18.2 滑动窗口 18.3 获取大量数据和人工数据 18.4 上限分析:哪部分管道的接下去做 十九.总结(Conclusion) 19.…
https://www.jiqizhixin.com/articles/2017-09-09-5 AllenNLP 可以让你轻松地设计和评估几乎所有 NLP 问题上最新的深度学习模型,并同基础设施一起让这些模型自由运行在云端和你的笔记本电脑上. 链接:http://allennlp.org (http://allennlp.org/) GitHub:https://github.com/allenai/allennlp Allen NLP 是一个基于 Apache 2.0 的 NLP 研究库,构…
metrics是sklearn用来做模型评估的重要模块,提供了各种评估度量,现在自己整理如下: 一.通用的用法:Common cases: predefined values 1.1 sklearn官网上给出的指标如下图所示: 1.2除了上图中的度量指标以外,你还可以自定义一些度量指标:通过sklearn.metrics.make_scorer()方法进行定义: make_scorer有两种典型的用法: 用法一:包装一些在metrics中已经存在的的方法,但是这种方法需要一些参数,例如fbeta…
遗传算法适应度的选择: 机器学习的适应度可以是任何性能指标 —准确度,精确度,召回率,F1分数等等.根据适应度值,我们选择表现最佳的父母(“适者生存”),作为幸存的种群. 交配: 存活下来的群体中的父母将通过交配产生后代,使用两个步骤的组合:交叉/重组和突变. 交叉:交配父母的基因(参数)将被重新组合,产生后代,每个孩子从父母双方遗传一些基因(参数): 突变:一些基因(参数)的值将被改变以保持遗传多样性,这使得遗传算法通常能够得到更好的解决方案. 备注:我们保留幸存的父母,以便保留最好的适应度参…
关于神经网络你不能不知道的一切 作者|Kailash Ahirwar 编译|Sambodhi 编辑|Vincent AI前线导语:理解什么是人工智能,以及机器学习和深度学习是如何影响人工智能的,这是一种荡气回肠的体验.最近,MateLabs联合创始人兼CTO Kailash Ahirwar在Mudium发布了一篇博文<关于神经网络你不能不知道的一切>[1](Everything you need to know about Neural Networks). 本文涵盖了从神经元到训练轮数,介绍…
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 参考资料 https://www.cnblogs.com/webRobot/p/9034079.html 逻辑回归重点: 1.sigmoid函数(…
scikit-learn API 这是scikit-learn的类和函数参考.有关详细信息,请参阅完整的用户指南,因为类和功能原始规格可能不足以提供有关其用途的完整指南. sklearn.base:基类和实用函数 所有估算器的基类. 基类 base.BaseEstimator:scikit-learn中所有估算器的基类 base.BiclusterMixin:Mixin类适用于scikit-learn中的所有bicluster估算器 base.ClassifierMixin:Mixin类适用于s…
评估指标 Evaluation metrics 机器学习性能评估指标 选择合适的指标 分类与回归的不同性能指标 分类的指标(准确率.精确率.召回率和 F 分数) 回归的指标(平均绝对误差和均方误差) 混淆矩阵(confusion matricess) 一.选择合适的指标 评估模型是否得到改善,总体表现如何 在构建机器学习模型时,我们首先要选择性能指标,然后测试模型的表现如何.相关的指标有多个,具体取决于我们要尝试解决的问题. 此外,在测试模型时,也务必要将数据集分解为训练数据和测试数据.如果不区…
本文整理了关于机器学习分类问题的评价指标——Confusion Matrix.ROC.AUC的概念以及理解. 混淆矩阵 在机器学习领域中,混淆矩阵(confusion matrix)是一种评价分类模型好坏的形象化展示工具.其中,矩阵的每一列表示的是模型预测的样本情况:矩阵的每一行表示的样本的真实情况. 举个经典的二分类例子: 混淆表格:                 混淆矩阵是除了ROC曲线和AUC之外的另一个判断分类好坏程度的方法,通过混淆矩阵我们可以很清楚的看出每一类样本的识别正误情况.…
机器学习起源于神经网络,而深度学习是机器学习的一个快速发展的子领域.最近的一些算法的进步和GPU并行计算的使用,使得基于深度学习的算法可以在围棋和其他的一些实际应用里取得很好的成绩. 时尚产业是深度学习的目标领域之一.闪购网站Gilt就一直在使用深度学习来进行产品推荐和服装的属性分类.裙子样式是通过Facebook的Torch库来自动地识别其适用场合.裙子轮廓.领口和袖子类型的.Torch使用由ImageNet数据集训练得到的模型来利用每张图片已经具有的标签,并通过Gilt选定的具体特征来增强它…
任何深度学习框架,为了获得成功,必须提供一系列最先进的模型,以及在流行和广泛接受的数据集上训练的权重,即与训练模型. TensorFlow现在已经提出了一个更好的框架,称为TensorFlow Hub,它非常易于使用且组织良好.使用TensorFlow Hub,您可以通过几行代码导入大型和流行的模型,自信地执行广泛使用的传输学习活动.TensorFlow Hub非常灵活,可以托管您的模型以供其他用户使用.TensorFlow Hub中的这些模型称为模块.在本文中,让我们看看如何使用TensorF…